

5 March 2024

RURAL SUBDIVISION

PALLISER DOWNS STAGE 1A

GEOTECHNICAL COMPLETION REPORT

Cabra Rural Developments Limited / Rahopara Farms Limited

AKL2019-0017AF Rev 1

AKL2019-0017AF				
Date	Revision	Comments		
2 November 2023	А	Initial draft for internal review		
14 February 2024	0	Draft issue to client		
4 March 2024	В	Amended with inclusion of Lot 33 additional works		
5 March 2024	1	Final issue		

	Name	Signature	Position
Prepared by	Navneel Karan		Engineering Geologist
Reviewed by	Richard Knowles	let knowles	Principal Geotechnical Engineer CMEngNZ, CPEng
Authorised by	Chris Ritchie		Principal Engineering Geologist CMEngNZ, PEngGeol

TABLE OF CONTENTS

1	INTROD	DUCTION	1
2	DESCRI	PTION OF WORKS	1
3	GEOTEC	CHNICAL QUALITY CONTROL	2
3.1 3.2		ervations tion Control	
4	EVALUA	ATION OF COMPLETED EARTHWORKS	3
4.1	Natural 4.1.1 4.1.2 4.1.3 4.1.4	Hazards Land Stability Erosion Liquefaction Fill Induced Settlement	3 4 4
4.2	Subsoil 4.2.1 4.2.2 4.2.3	Drains and Groundwater Underfill Drains Subsoil Drain Outlets Groundwater	4 4 4
4.3	Road Su	bgrades	
4.4	Design c 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5	of Shallow Foundations in Stable Building Areas Bearing Capacity Foundation Settlements Soil Expansiveness Classification Site (Seismic) Class Existing Fills (Lot 36 Stable Platform Area)	5 5 5 6
4.5	Constru 4.5.1 4.5.2 4.5.3	ction of Foundations in Stable Building Areas Topsoil Depths on Stable Building Areas Brown Inorganic Soils Soil Expansivity	6 6
4.6	On Site	Effluent Disposal	7
4.7	Stormw	ater Disposal	7
5	CLOSUF	?E	7

APPENDICES

Appendix A: Statement of Professional Opinion on Suitability of Land for Building Construction

Appendix B: Statement of Suitability of Engineered Fill for Lightweight Structures

Appendix C: As-Built Drawings

Appendix D: Soil Expansivity

Appendix E: Field Test Data

Appendix F: Stability Supplement

1 INTRODUCTION

In accordance with our instructions, this Geotechnical Completion Report has been prepared for Cabra Rural Developments Limited / Rahopara Farms Limited as part of the documentation to be submitted to Auckland Council following earthworks to form Stage 1A of the Palliser Downs development.

This report covers the construction period March 2022 to February 2024 and is intended to be used for certification purposes for new lots (listed below) created from existing lots 1 and 2 DP 55674 on newly Deposited Plan 596653 as follows:

- 5 new rural residential lots numbered lots 33 to 37;
- 1 new road numbered lots 5 and depicted as Road 2;
- one accessway servicing lots 33, 34 and 37 via way of easements rather than a separate lot.

This stage of the Palliser Downs Development is located on the western side of Palliser Downs Drive, Wainui. As can be seen from the as-built plans, all of the lots have been formed by cuts up to 5m deep and minor fills up to 1m deep while the road alignment has been more extensively filled.

Construction of this subdivision has been undertaken in general accordance with;

- Auckland Council's Resource Consent number BUN60069542 and Engineering Approval letter dated 13 May 2019.
- NZS4431:1989
- Auckland Council's Code of Practice for Land Development and Subdivision, Chapter 2 Earthworks and Geotechnical, Version 1.6 dated September 2013.

This development was granted Resource Consent without existing geotechnical investigations. Accordingly, analyses completed to support the recommendations of the report are presented in Appendix F. In granting the Resource Consent, conservatively large on-site wastewater disposal areas were assigned. To date no additional soakage categorisation reporting has been completed.

For the construction of this stage of the development, the following roles were fulfilled as defined in NZS 4431:2022 and the Ministry for the Environment Contaminated Land Management Guidelines:

- Geotechnical Designer: CMW Geotechnical NZ Limited
- Certifier: CMW Geotechnical NZ Limited
- Recognised Laboratory: CMW Geotechnical NZ Limited
- Contractor: Opie Contractors Limited
- Sub-contractor (earthworks): Bob Hick Earthmoving

As CMW has fulfilled the roles of both earth fills Certifier and Geotechnical Designer, this report has been prepared as a combined report covering both of these aspects of the project work.

2 DESCRIPTION OF WORKS

The main earthworks contractor, Bob Hick Earthmoving Limited (BHE), working under Opie Contractors, commenced topsoil stripping of the first section of Road 2 on 29 March 2022. This was associated with gully muckouts, undercuts, drainage construction with outlets into the creek and backfill with engineered fill.

On 4 May 2022, BHE had stripped most of the east-west trending alignment of Road 2, rather than continue stripping north, BHE focus on fill road to grade by using cut material from proposed platforms.

On 9 May 2022, BHE mucked out a silt pond where soft material was found at the base of the silt pond. The silt pond base was undercut by a further 300mm before backfilling with engineered fill. On 18 May 2022, the gully muckout for the culvert began, this was be backfilled with engineered fill.

There was a break between August 2022 and October 2022, due to winter conditions being unsuitable for earthworks, filling for the proposed road batter began on 26 October 2022 followed by topsoil stripping on the proposed lots on 28 October 2022.

During Christmas 2022 and New Years 2023, BHE completed filling for the cul-de-sac.

Road 2 was stabilised and tested on 16 March 2023 and metal was placed on road on 18 to 19 April 2023.

By the end of April 2023 most of the lots had been formed to subgrade level and were re-topsoiled, however, earthworks additional works to improve stability conditions in the low batter to the south of the Lot 33 platform were completed in February 2024.

The main items of plant used by the earthworks sub-contractors included:

- 1 x CAT 320C Excavator
- 1 x 20T Excavator
- 1 x Cat 815 Padfoot Compactor
- 1 x Moxy Dump Truck
- 1 x Bulldozer

3 GEOTECHNICAL QUALITY CONTROL

3.1 Site Observations

During the works site visits were typically undertaken several times each week to assess compliance with NZS 4431 and project specific design recommendations and specifications.

Site visits were carried out to observe and confirm compliance relating to:

- Adequate topsoil stripping;
- Fill areas prior to the placement of fill materials to ascertain that all topsoil, existing uncertified fills and soft inorganic subsoils had been removed;
- Installation of subsoil drains, excluding road under-channel drains;
- Backfilling of subsoil drains;
- Placement and compaction of engineered fills.

3.2 Compaction Control

Compaction of engineered earth fills was controlled by undrained shear strength measured by handheld shear vane calibrated using the NZGS 2001 method and by air voids as defined by NZS4402.

The criteria for undrained shear strength were a minimum single value of 100 kPa and minimum average of any 10 consecutive tests of 140 kPa.

The criteria for air voids were a maximum single value of 12% and maximum average of any 10 consecutive tests of 10%.

Vane shear strength, water content and in situ density tests were carried out on all areas of the engineered filling to at least the frequency required by the project specification (1/500m³).

While these tests showed on a few occasions that the contractor was struggling to achieve the required compaction standards with the prevailing site and soil conditions, to the best of our knowledge, all areas of fill were re-worked as necessary. Subsequent testing confirmed compliance with the specification.

4 EVALUATION OF COMPLETED EARTHWORKS

4.1 Natural Hazards

Natural hazards have been assessed for the completed landform across the lots and on each lot a **Stable Building Area** considered suitable for NZS 3604 type building development has been defined as depicted on the appended as-built plans. These areas are considered to be free of the natural hazards described in Section 71(3) of the Building Act, i.e. erosion, falling debris, subsidence, slippage, and inundation, although the eastern extents of the Lot 36 Stable Building Area have been earthworked by others previously. Further comment is provided in Section 4.4.5 and in the Suitability Statement in Appendix A.

Consideration of the inundation hazard was outside the scope of CMW's brief and has been assessed by others.

For reference purposes only, the Nominated Building Platforms from the Resource Consent approval have been included on the as-built drawings. Development recommendations and restrictions at these locations are those of the **Stable Building Areas** and any other **Specific Design** or **Bush Covenant Zones** they lie within following minor amendments to the original layout as outlined below.

4.1.1 Land Stability

The subdivision scheme layout includes a series of batter slopes to form level terraces for building platforms. The batters include portions of the lots with moderately steep gradients as depicted on the as-built drawings. Design of the works to provide appropriate stability conditions that meet regulatory requirements for the land, including grassed, planted and rock-faced batters, has led to earthworks undercuts being completed in some areas to replace low strength soils with engineered fills, and to the installation of subsoil drainage.

Stability conditions for finished ground profiles have been assessed under a range of groundwater conditions which satisfy ultimate limit state design criteria. The soil parameters for the analyses were selected from investigations undertaken at the site and from experience in this terrain. Details of our investigations and analyses are provided in *Appendix F*.

Stability conditions outside the Stable Building Areas may not achieve the same stability conditions as the **Stable Building Areas** and in most cases contain sloping land or are adjacent to sloping land. Accordingly, the following zones of restricted activity have been applied outside the **Stable Building Areas**:

- Specific Design Zones All areas that are not either Stable Building Areas or Bush Covenant Zones. Development is not prohibited in these areas but it will be subject to specific investigation and design intended to protect any building development from natural hazards, including long term creep effects on or adjacent to steep slopes, and to protect the slopes from inappropriate loading or undermining. These zones include batter areas recently mulched planted as part of the development of the subdivision.
- **Bush Covenant Zones** intended to protect areas of established vegetation and to ensure that stability conditions are not able to be compromised.

Plantings within some areas of the lots is protected by Resource Consent conditions and accordingly vegetation removal, earthworks and building development are prohibited in these areas. These areas are present on all the lots on this stage of the development but are outside the Stable Building Areas. Their extents are depicted on the appended C&R Surveyors Limited as-built plans.

The Bush Covenant Zones contain land that has not been evaluated or engineered to improve the natural stability conditions. Land in these areas may be subject to natural hazards as described in section 71(3)

of the Building Act however the presence of the existing vegetation in these areas will provide a degree of enhancement to stability conditions as described in Section 4.1.2 below.

Full descriptions of the restrictions associated with these zones are presented in our Opinion on Suitability in *Appendix A*. Additional information is also provided in some of the following sections.

4.1.2 Erosion

On all sloping land in this geological setting, including on engineered batter slopes, localised surface stability can be compromised, and erosion can be instigated by indiscriminate disposal of concentrated stormwater onto the ground surface and/ or by removal of vegetation. Further comments on stormwater disposal are provided in Section 4.7 below.

On batters, depths of mulch and topsoil should be limited to less than 150mm to minimise the risks of saturation leading to localised slumping on batter face, which is typified by the mulch layer sliding off the clay subgrade beneath. Wherever practical on such land, and particularly on steep batters, any plantings and grass cover should be well maintained as the roots of an established vegetation cover can serve to bind the surface soils, while the foliage can reduce rain infiltration and soil saturation, resulting in better resistance to erosion and shallow slumping.

4.1.3 Liquefaction

The liquefaction risk for the lots on this development has been assessed by review of Auckland Council GIS maps that confirm the damage category to be: Very Low Vulnerability.

4.1.4 Fill Induced Settlement

On the basis of the relatively minor magnitude of fill depths beneath Stable Building Areas, together with the elapsed time since it was placed, we consider that remaining post-construction settlements will be within code limits.

4.2 Subsoil Drains and Groundwater

The as-built plans show the positions of subsoil drains and their outlets that were installed during the earthworks as described in the following sub-sections.

Descriptions of restrictions associated with these drains and outlets are contained in our appended Opinion on Suitability in *Appendix A*.

4.2.1 Underfill Drains

These drains were installed at the bases of fills to assist with the earthworks operations by capturing seepages at the cleared ground level. They require no specific maintenance and while their ongoing function is not critical to stability conditions, but they provide ongoing control of groundwater levels and pore water pressure relief so their ongoing function should not be compromised by future works.

Typically these drains comprise punched draincoils surrounded by drainage gravel. Specific design details are provided in the project reports and specifications. If drain depths are unclear at specific locations, they can be estimated from the depths of fills depicted on the as-built plans.

4.2.2 Subsoil Drain Outlets

On lots where subsoil drainage discharges to bush it is important that the function of these outlets is maintained. Details of the locations are shown on the as built plans.

4.2.3 Groundwater

Groundwater levels beneath the engineered fills can be expected to be controlled by the underfill drains and should therefore typically be deeper than 2m, subject to seasonal variations.

In some areas of natural ground, counterfort drains have been installed to maintain supressed groundwater levels. Based on our work to date we anticipate groundwater levels remaining well below the depth of influence of anticipated earthworks and foundation works for NZS 3604 type dwellings.

4.3 Road Subgrades

Penetration resistance testing was carried out on the road subgrades during construction and the results of this testing were forwarded to Hutchinson Consulting Engineers Limited for pavement remedial design. Where soft ground with low equivalent CBR values was identified it was generally undercut and hardfill was placed. All road subgrade areas were subsequently lime stabilised to achieve appropriate CBR values.

Benkelman Beam testing of the base course was carried out by Road Test Limited on each road and those results were also forwarded to Hutchinson Consulting Engineers.

4.4 Design of Shallow Foundations in Stable Building Areas

The as-built plans depict the extents of areas described as **Stable Building Areas**. They also depict the original Nominated Building Platforms from the Resource Consent and these typically fall within the final Stable Building Areas.

4.4.1 Bearing Capacity

Once bulk earthworks and top-soiling of the building platforms had been completed, our staff drilled hand auger boreholes on platforms in natural ground to determine representative finished ground conditions and hence evaluate likely foundation options for future building development. Our assessments of bearing capacity for the design of shallow foundations on each building platform are contained in our Opinion on Suitability in *Appendix A*.

If higher geotechnical ultimate bearing capacities are required than have been specified, further specific site investigation and design of foundations should be carried out prior to Building Consent application.

4.4.2 Foundation Settlements

At the bearing pressures specified in *Appendix A* and subject to the design requirements for soil expansiveness provided below, differential settlement of shallow foundations for buildings designed in accordance with NZS 3604 (including the 600mm subfloor fill depth limit) should be within code limits.

4.4.3 Soil Expansiveness Classification

Seasonal soil moisture variations within most clay-rich soils typically result in the soil swelling during winter months and then shrinking during summer months. These seasonal movements can cause issues such as cracking of concrete floors, brittle cladding and masonry walls or distortion of building frames causing doors and windows to jam from differential settlement. The effects are further compounded by local influences that worsen differential movements. These may include growth of high demand trees and shrubs that cause localised soil drying or either leaking pipes or tree root removal, leading to localised wetting.

The potential effects need to be managed in a combination of appropriate:

- classification of the level of risk
- design of foundations
- management of soil moisture conditions by contractors during construction

• management of landscaping and plantings by homeowners throughout a building's lifetime

Testing on 5 samples, one on each building platform within this stage of the development, was completed in accordance with the requirements of NZS 3604. All testing was completed by RoadTest Limited, a testing laboratory accredited by IANZ for the tests undertaken. Results are provided in *Appendix D* together with important additional information for landowners.

Results of our assessment for each lot are contained in our Statement of Opinion on Suitability of Land in *Appendix A.*

4.4.4 Site (Seismic) Class

Our assessments of NZS 1170.5 site Class(es) is provided in our Opinion of Suitability and the Summary Table, both in *Appendix A*.

4.4.5 Existing Fills (Lot 36 Stable Platform Area)

The eastern portions of the Lot 36 Stable Building Area were earthworked by others prior to the works described herein. The extent of the affected area is between PT03 to PT07 on this lot depicted on appended CMW Drawings 01 to 03. Retrospective investigations indicate shallow fills here that generally appear to have been placed to an engineering standard such as our fill specification. Nevertheless, we consider it prudent for any building subgrade and foundations in this area to be subject to further engineering inspection as described in the appended Opinion of Suitability in *Appendix A*.

4.5 Construction of Foundations in Stable Building Areas

4.5.1 Topsoil Depths on Stable Building Areas

Topsoil depths on Stable Building Areas have been checked by the drilling of a borehole in the approximate centre of the building platform on each lot. The results are considered indicative for each lot, but may be subject to variations. Topsoil depths are between 50 and 300mm on this stage of the development.

Site specific findings are contained in our Opinion on Suitability Summary in *Appendix A*. However, it is possible that further levelling works have been undertaken since our investigations and accordingly, we strongly recommend that lot purchasers complete their own checks of topsoil depths.

4.5.2 Brown Inorganic Soils

Beneath the clay soil mantle across the site, naturally occurring dark greyish brown deposits of inorganic Hukerenui soils from the Northland Allochthon Group are present. These deposits may be exposed beneath topsoil in areas that have been cut during the bulk earthworks, or may be included in engineered fills that have been placed. These are NOT topsoil and are suitable for foundations but may be difficult to distinguish from topsoil other than from their high clay content and absence of organic odour. If uncertainty exists, professional advice should be sought from an experienced geo-professional familiar with the contents of this report to avoid unnecessary construction delay and expense.

4.5.3 Soil Expansivity

Appendix D contains important additional recommendations for contractors for the appropriate preparation of subgrade areas prior to floor construction to minimise risks of shrinkage and swelling due to high soil expansivity.

4.6 On Site Effluent Disposal

The appended CMW Site Plan (drawing 01) shows areas outside Stable Building Areas that have been assessed by CMW Geosciences as being geotechnically suitable (stable) for surface mounted dripper lines for effluent disposal fields.

The total size of disposal area assigned on each lot complies with the requirements of the Resource Consent and was conservatively sized for low permeability soils. Site specific testing may provide beneficial results.

4.7 Stormwater Disposal

As mentioned in Section 4.1.2 above, surface stability can be severely compromised by indiscriminate disposal of <u>concentrated</u> stormwater onto the ground surface and/ or by removal of vegetation.

Building and landscape designers must ensure that all runoff from solid surfaces is directed into appropriately designed and located outlets to minimise these risks. It is also important that care is paid to the disposal of stormwater during construction so that concentrated discharges (e.g. from unconnected spouting) are not directed towards steep ground.

Appropriate locations for stormwater outlets are typically either:

- formed outlet structures with scour control located in gully inverts (the geotechnically preferred option), or
- engineered spreader bars located on low-gradient land, with appropriate downslope scour control

On this site, most of the lots contain gullies within Bush Covenant area that are suitable for private discharge of stormwater using the first option above. Stormwater disposal into the roadside swales is not permitted.

We have also nominated the most suitable location(s) on each lot for the design and installation of spreader bars for discharge of the private stormwater if desired. This design should be undertaken by an experienced civil engineer at the time of Building Consent, taking into account the anticipated disposal volumes from all solid surfaces, including water tank overflows and any overflows anticipated from swimming pools.

Nevertheless we recommend as part of the architectural and landscape design on these lots, that designers and owners consider methods to limit the extents of solid surface areas that lead to the need to collect and concentrate stormwater to an outfall, but rather consider use of permeable surfaces and surface water infiltration across broad areas as would occur in natural, undeveloped landforms.

5 CLOSURE

Additional important information regarding the use of your CMW report is provided in the 'Using your CMW Report' document attached to this report.

This report has been prepared for use by Cabra Rural Developments Limited / Rahopara Farms Limited in relation to the Rural subdivision Palliser downs STAGE 1a project in accordance with the scope, proposed uses and limitations described in the report. Should you have further questions relating to the use of your report please do not hesitate to contact us.

Although regular site visits have been undertaken for observation, for providing guidance and instruction and for testing purposes, the geotechnical services scope did not include full time site presence. To this end, our Opinion on Suitability in **Appendix A** and our Suitability Statement in **Appendix B** also rely on the Contractors' work practices and assumes that when we have not been present to observe the work, it has been completed to high standards and in accordance with the drawings, instructions and consent conditions provided to them.

Similarly, they assume that all as-built information and other details provided to the Client and/ or CMW by other members of the project team are accurate and correct in all respects.

Where a party other than Cabra Rural Developments Limited / Rahopara Farms Limited seeks to rely upon or otherwise use this report, the consent of CMW should be sought prior to any such use. CMW can then advise whether the report and its contents are suitable for the intended use by the other party.

USING YOUR CMW GEOTECHNICAL REPORT

Geotechnical reporting relies on interpretation of facts and collected information using experience, professional judgement, and opinion. As such it generally has a level of uncertainty attached to it, which is often far less exact than other engineering design disciplines. The notes below provide general advice on what can be reasonably expected from your report and the inherent limitations of a geotechnical report.

Preparation of your report

Your geotechnical report has been written for your use on your project. The contents of your report may not meet the needs of others who may have different objectives or requirements. The report has been prepared using generally accepted Geotechnical Engineering and Engineering Geology practices and procedures. The opinions and conclusions reached in your report are made in accordance with these accepted principles. Specific items of geotechnical or geological importance are highlighted in the report.

In producing your report, we have relied on the information which is referenced or summarised in the report. If further information becomes available or the nature of your project changes, then the findings in this report may no longer be appropriate. In such cases the report must be reviewed, and any necessary changes must be made by us.

Your geotechnical report is based on your project's requirements

Your geotechnical report has been developed based on your specific project requirements and only applies to the site in this report. Project requirements could include the type of works being undertaken; project locality, size and configuration; the location of any structures on or around the site; the presence of underground utilities; proposed design methodology; the duration or design life of the works; and construction method and/or sequencing.

The information or advice in your geotechnical report should not be applied to any other project given the intrinsic differences between different projects and site locations. Similarly geotechnical information, data and conclusions from other sites and projects may not be relevant or appropriate for your project.

Interpretation of geotechnical data

Site investigations identify subsurface conditions at discrete locations. Additional geotechnical information (e.g. literature and external data source review, laboratory testing etc) are interpreted by Geologists or Engineers to provide an opinion about a site specific ground models, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist due to the variability of geological environments. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. Interpretation of factual data can be influenced by design and/or construction methods. Where these methods change review of the interpretation in the report may be required.

Subsurface conditions can change

Subsurface conditions are created by natural processes and then can be altered anthropically or over time. For example, groundwater levels can vary with time or activities adjacent to your site, fill may be placed on a site, or the consistency of near surface conditions might be susceptible to seasonal changes. The report is based on conditions which existed at the time of investigation. It is important to confirm whether conditions may have changed, particularly when large periods of time have elapsed since the investigations were performed.

Interpretation and use by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a geotechnical report. To help avoid misinterpretations, it is important to retain the assistance of CMW to work with other project design professionals who are affected by the contents of your report. CMW staff can explain the report implications to design professionals and then review design plans and specifications to see that they have correctly incorporated the findings of this report.

Your report's recommendations require confirmation during construction

Your report is based on site conditions as revealed through selective point sampling. Engineering judgement is then applied to assess how indicative of actual conditions throughout an area the point sampling might be. Any assumptions made cannot be substantiated until construction is complete. For this reason, you should retain geotechnical services throughout the construction stage, to identify variances from previous assumption, conduct additional tests if required and recommend solutions to problems encountered on site.

A Geotechnical Engineer, who is fully familiar with the site and the background information, can assess whether the report's recommendations remain valid and whether changes should be considered as the project develops. An unfamiliar party using this report increases the risk that the report will be misinterpreted.

Environmental Matters Are Not Covered

Unless specifically discussed in your report environmental matters are not covered by a CMW Geotechnical Report. Environmental matters might include the level of contaminants present of the site covered by this report, potential uses or treatment of contaminated materials or the disposal of contaminated materials. These matters can be complex and are often governed by specific legislation.

The personnel, equipment, and techniques used to perform an environmental study can differ significantly from those used in this report. For that reason, our report does not provide environmental recommendations. Unanticipated subsurface environmental problems can have large consequences for your site. If you have not obtained your own environmental information about the project site, ask your CMW contact about how to find environmental risk-management guidance.

APPENDIX A: STATEMENT OF PROFESSIONAL OPINION ON SUITABILITY OF LAND FOR BUILDING CONSTRUCTION

STATEMENT OF PROFESSIONAL OPINION ON SUITABILITY OF LAND FOR BUILDING CONSTRUCTION

Development:Stage 1A of the Palliser Downs DevelopmentDeveloper:Cabra Rural Developments Limited / Rahopara Farms LimitedLocation:Palliser Downs Drive, Wainui

I, Richard Knowles, of CMW Geotechnical NZ Limited, Auckland, hereby confirm that:

- 1. As a Chartered Professional Engineer experienced in the field of geotechnical engineering, I am a Geoprofessional as defined in clause 1.2.2 of NZS 4404:2010 and was retained by the Developer as the geoprofessional on the above development.
- 2. The extent of analyses carried out to date are presented in *Appendix F*. The extent of my inspections during construction, and the results of all tests and/ or evaluations carried out are as described in my Geotechnical Completion Report dated February 2024.
- 3. My certification of the earth fills placed on this site is contained in *Appendix B*.
- 4. In my professional opinion, not to be construed as a guarantee, I consider that:
 - a. The completed earthworks take into account land slope and foundation stability considerations on the Stable Building Areas. Outside the Stable Building Areas the land contains No Build Bush Covenant Zones as depicted on the as-built plans. All other areas are Specific Design Zones and contain areas specified as suitable for effluent disposal fields. A stable accessway has been provided to each Stable Building Area.
 - b. No building construction and no earthworks (i.e. cut or fills of any depth) should take place within the designated Specific Design Zone areas unless endorsed by a Chartered Professional Engineer experienced in geomechanics and familiar with the contents of this report. The endorsement will need to consider the implications of the proposals on both global stability conditions and soil creep on the building buildings, control of surface water and temporary support requirements construction of all earthworks, foundations and retaining walls and if necessary, comment on what aspects require engineering inspections and certification.

This limitation also applies to long term landscaping works, including any proposed minor cuts either on or near batter toes to be retained by new landscaping walls that might not normally require engineering, and to landscaping fills on or immediately above the batter slopes.

c. **No Build Bush Covenant Zone** areas defined on Lots 33 to 37 inclusive on the as-built plans are designated no-build zones on the basis of potential for instability and/ or because of the presence of protected bush.

No building construction and no earthworks may take place in these areas other than as required for construction of stormwater outlets.

- d. The function of the subsoil drains installed beneath Lots 33 and 35 inclusive as shown on the as-built plans must not be impaired by any building development or landscaping works. Any bored or driven piles must be positioned to avoid damaging the draincoils. Where any subsoil drain is intercepted by building works, it must be reinstated under the direction of a Chartered Professional Engineer to ensure the integrity of the subsoil drainage system.
- e. The formed drainage outlets depicted on the as-built plans on Lot 33 must be kept free of debris and otherwise maintained as necessary to ensure their ongoing function.
- f. On all Stable Building Platforms (i.e. lots 33 to 37 inclusive) a geotechnical ultimate bearing capacity of 300 kPa may be assumed for shallow foundation design on the building platforms.

- g. The site (seismic) subsoil class has been assessed in accordance with NZS1170.5:2004 Clause
 3.1.3 from borelogs that included measurements of geotechnical properties. Our assessment is that the Stable Building Areas on lots 33 to 37 are all Class C- shallow soil.
- h. The eastern portions of the Lot 36 Stable Building Area were earthworked by others. The extent of the affected area is between PT03 to PT07 on this lot depicted on appended CMW Drawings 01 to 03. While retrospective investigations indicate shallow fills here that generally appear to have been placed to an engineering standard, we consider it prudent for any building subgrade and foundations in this area to be subject to inspection by a Chartered Professional Engineer to confirm its condition.

I		
I	٠	

Assessment of Characteristic Surface Movements and Design Classes for NZS 3604 Compliant Buildings on Stable Building Platforms					
Lots	Assessed AS2870 Site Class / 300 Year Design Characteristic Surface Movement (Ys)	Anticipated Equivalent NZBC B1/AS1 Expansivity Class for Design / 500 Year Design Characteristic Surface Movement(Ys)			
33 to 35	M (moderately reactive) / 40mm	M / 44mm			
36 and 37	H1 (highly reactive) / 60mm	H / 78mm			

B1/AS1 provides an Acceptable Solution through NZS 3604 for foundation design applying to a limited range of compliant building sizes, shapes and materials and only for concrete floor design with strip footings. In all other cases, NZS 3604 directs the use of AS2870 or a specific design.

If AS2870 is used for the design solution, it must be noted that the characteristic surface movements in that code apply to a (less conservative) 300 year return period drought while B1/AS1 provides for a 500 year return period drought.

Prior to the introduction of the B1/AS1 design information in November 2019, minimum foundation depths recommended as appropriate by geotechnical consultants in Auckland for shallow footing design under AS2870 were typically of the order of 600mm for Class M and 750mm for Class H1.

- j. On the basis of the earth fill certification and subject to the geotechnical limitations, restrictions and recommendations contained in clauses 4(a), 4(b), 4(c), 4(d), 4(e), 4(f), 4(g), 4(h) and 4(i) above, the filled and natural ground within **Stable Building Areas** is generally suitable for buildings constructed in accordance with NZS 3604 and the requirements of NZBC Clause B1/AS1 where appropriate. Alternatively, a specific foundation and structural design may be undertaken by a Chartered Professional Engineer.
- As described in Section 4.7 of the Geotechnical Completion Report, stormwater disposal should be to formed outlets in gully areas that are typically located in the Bush Covenant Areas, or to engineer designed spreader bars in the locations nominated on the CMW Site Plan, *Drawing* 01. The design must consider anticipated future flows and appropriate scour/ erosion controls.
- 5. Road subgrades have been formed with appropriate regard for slope stability and settlement risks.

The following table summarises the conditions on each of the Stable Building Areas.

For and on behalf of CMW Geosciences

let knowles

Richard Knowles Principal Geotechnical Engineer CMEngNZ, CPEng

	SOPO Summary Table								
Condition	Specific Design Zone (slope)	Bush Covenant / No Build Zone	Subsoil Drains Present	On-site Drainage Outlet Present	Geotechnical Ultimate Bearing Capacity (kPa)	NZS 1170.5 Site (seismic) Class	Subgrade Inspection due to existing fills	AS2870 Expansive Class	Indicative Topsoil Depth (mm)
Lot	GCR SOPO Clause								
Number (Stable Building Area)	4(b)	4(c)	4(d)	4(e)	4(f)	4(g)	4(h)	4(i)	
33	\checkmark	\checkmark	\checkmark	\checkmark	300	С		М	200
34	\checkmark	\checkmark			300	С		М	300
35	✓	✓	\checkmark		300	С		М	200
36	✓	~			300	С	✓ part only	H1	200
37	✓	✓			300	С		H1	300

•

APPENDIX B: STATEMENT OF SUITABILITY OF ENGINEERED FILL FOR LIGHTWEIGHT STRUCTURES

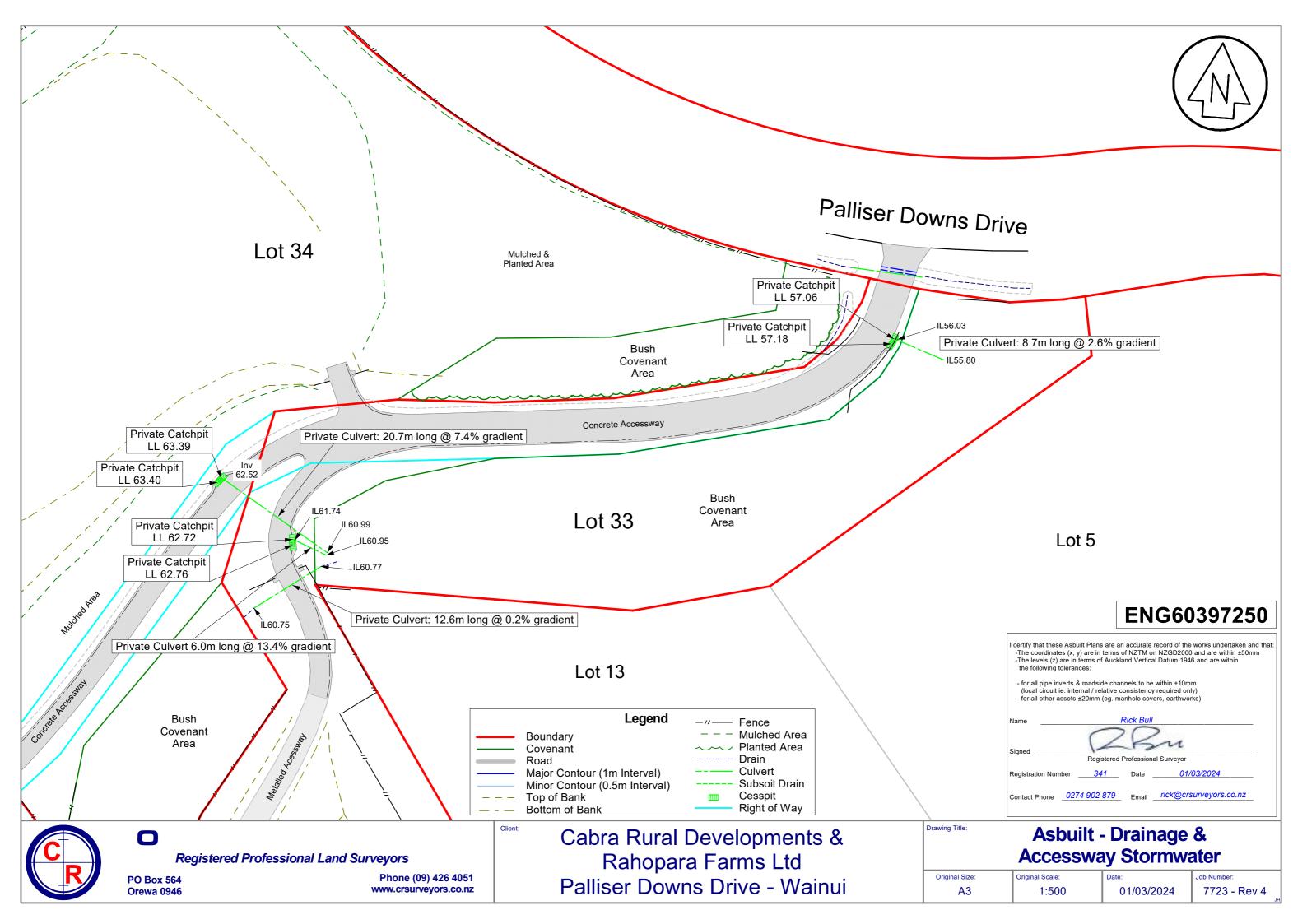
STATEMENT OF SUITABILITY OF ENGINEERED FILLS FOR LIGHTWEIGHT STRUCTURES

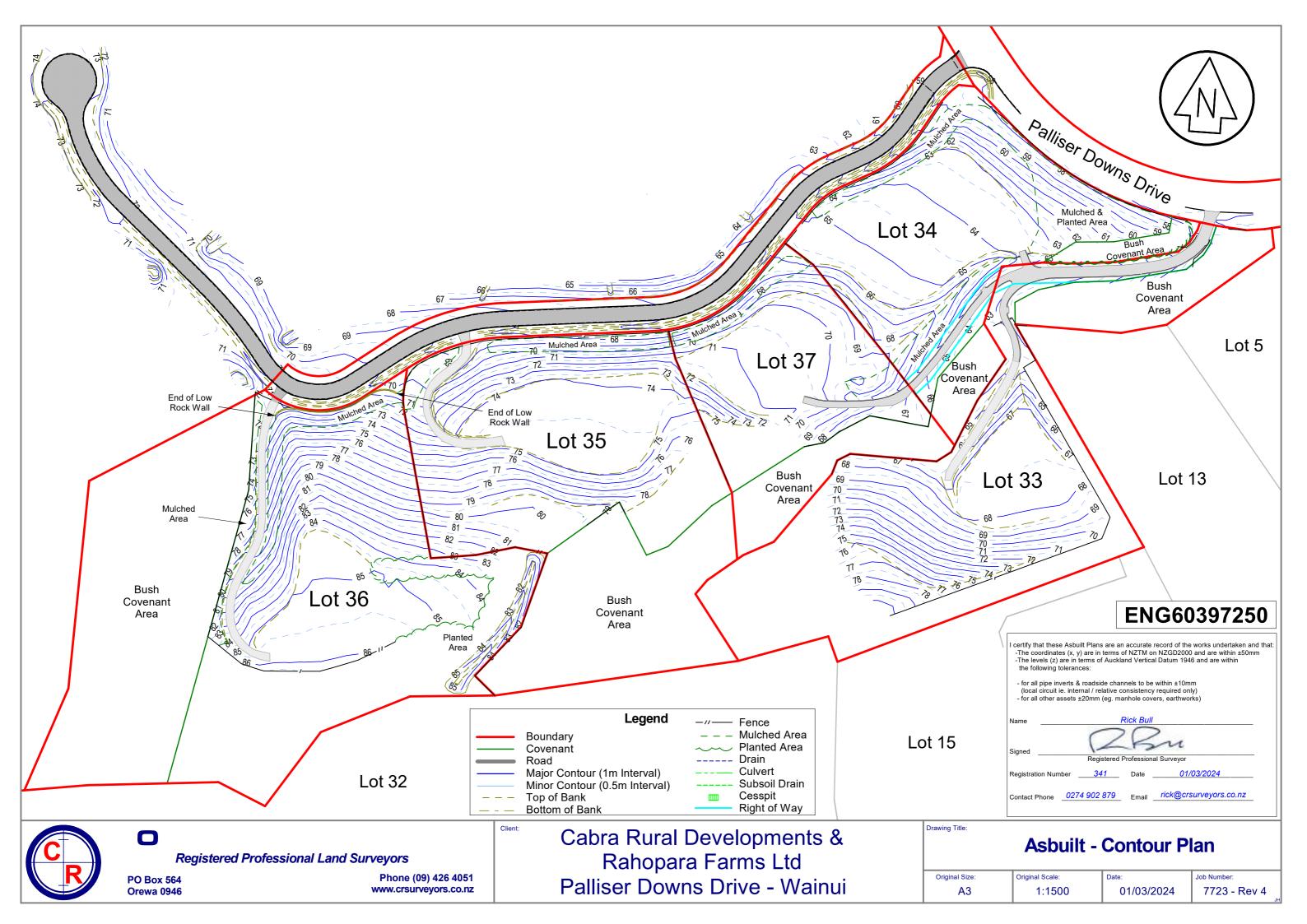
То:
Development:
Land Title(s):
Location:
Resource Consent Nos:
Developer:
Geotechnical Designer:
Certifier:

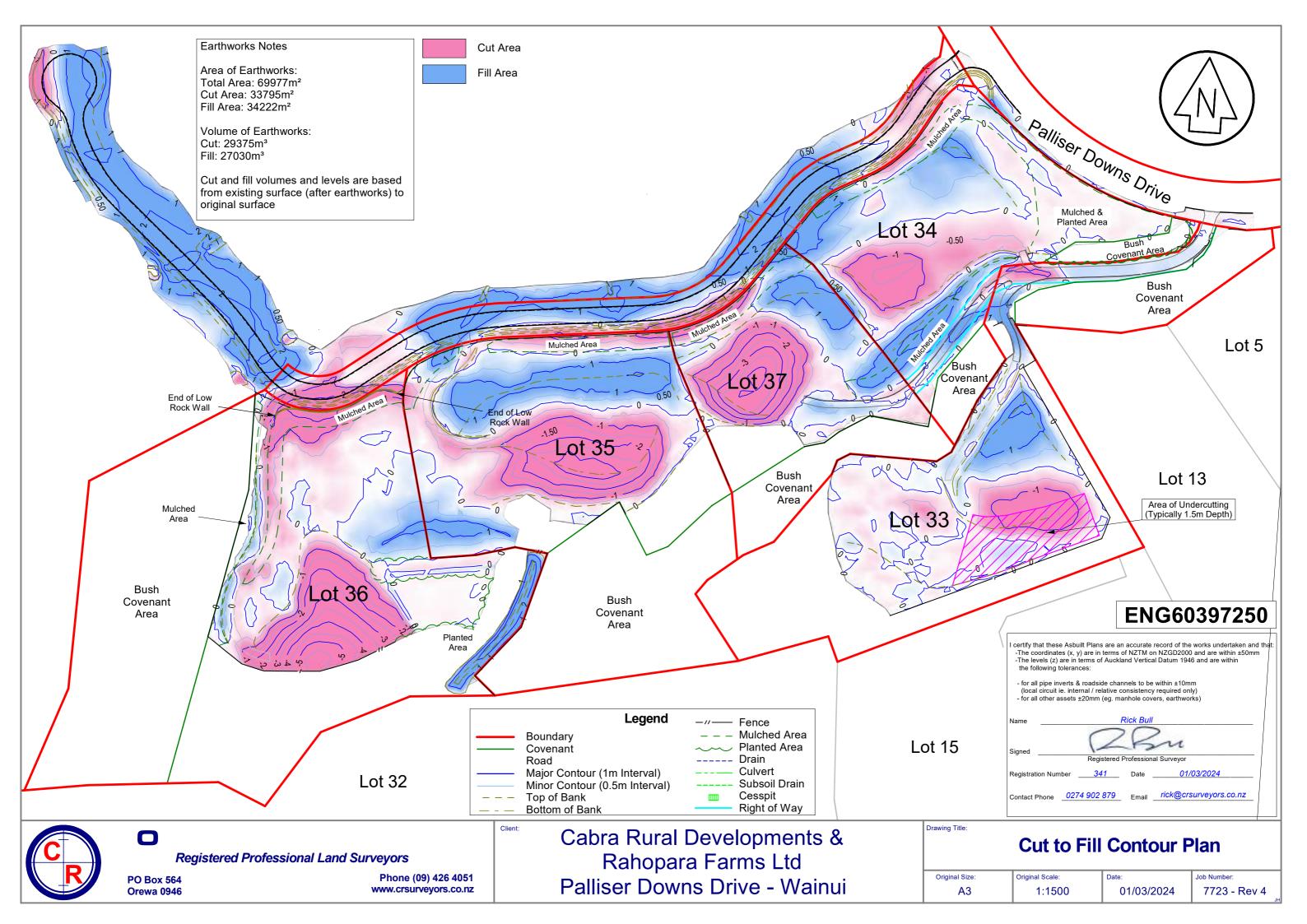
Auckland Council Stage 1A of the Palliser Downs Development Lot 1 DP 556774, Lot 2 DP 556774 Palliser Downs Drive, Wainui BUN60069542 Cabra Rural Developments Limited / Rahopara Farms Limited Richard Knowles of CMW Geotechnical NZ Limited Richard Knowles of CMW Geotechnical NZ Limited

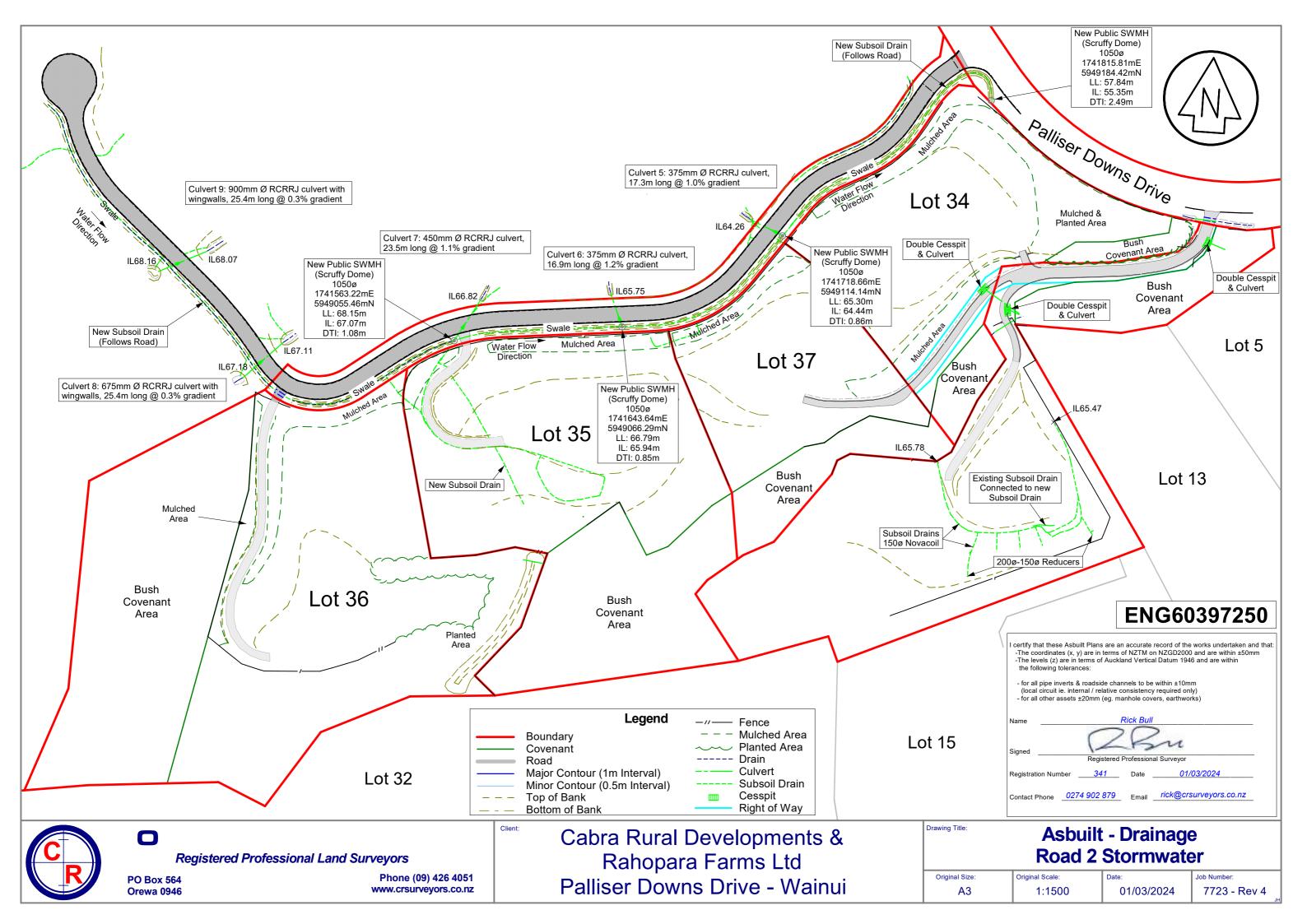
This Statement of Suitability is provided as an appendix to the CMW Geosciences Geotechnical Completion Report referenced in the page footer below, that also contains all as-built plans, test results and test inspection records relevant to the work completed.

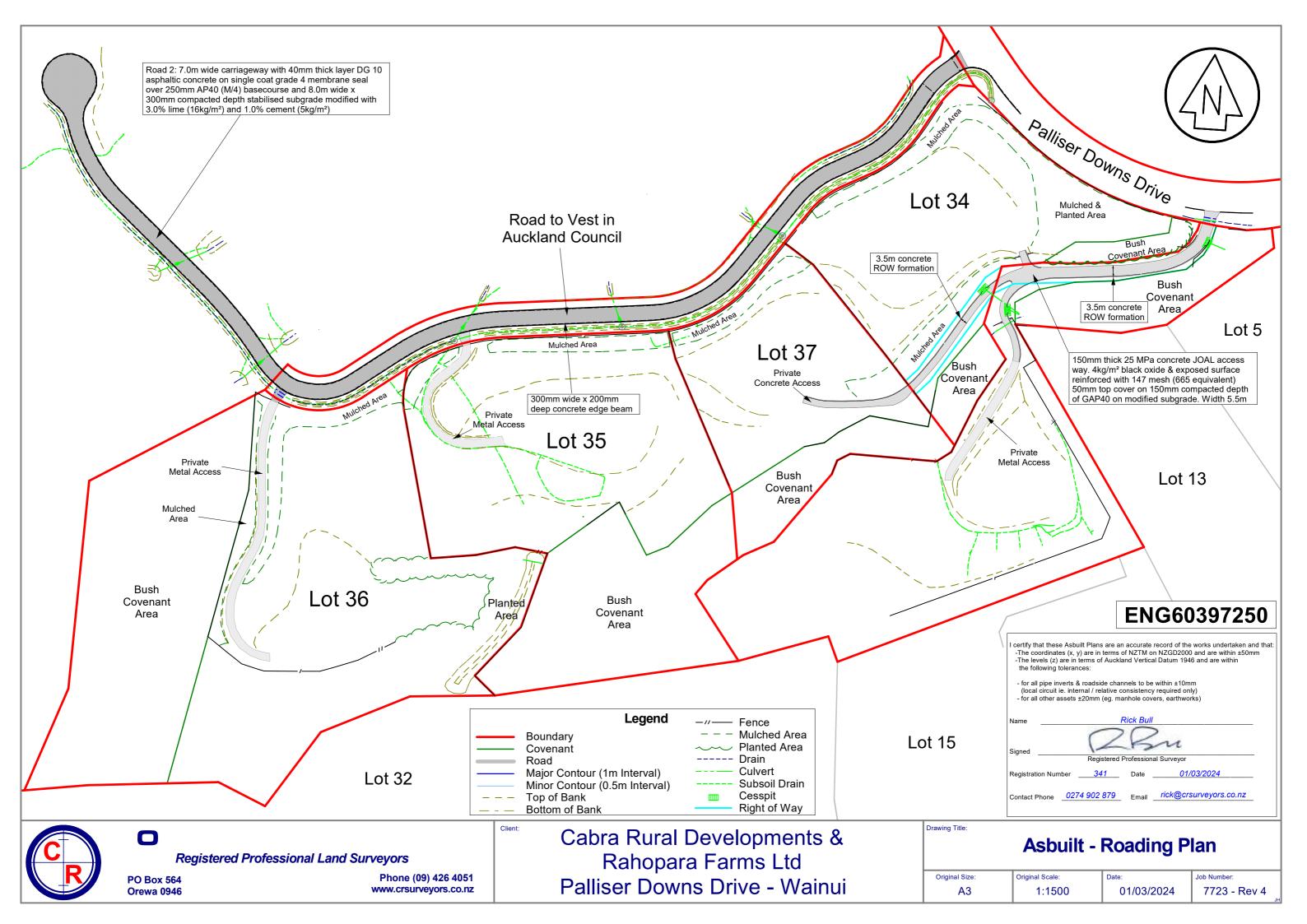
- 1. I, Richard Knowles, confirm that I am qualified as a certifier as defined in NZS4431:2022.
- 2. During this work, I was retained as certifier and I or my certifier's representative undertook inspections and testing as documented in the Geotechnical Completion Report.
- 3. I am satisfied that the engineered fill shown in the attached as-built survey was placed, compacted and tested in accordance with the attached specification and that all variations and non-compliances have been documented in the Geotechnical Completion report.
- 4. Based on the information available, I certify that, to the best of my knowledge, the intent of the geotechnical designer has been achieved.
- 5. This certification does not remove the necessity for normal inspection and design of foundations as would be made in natural ground.

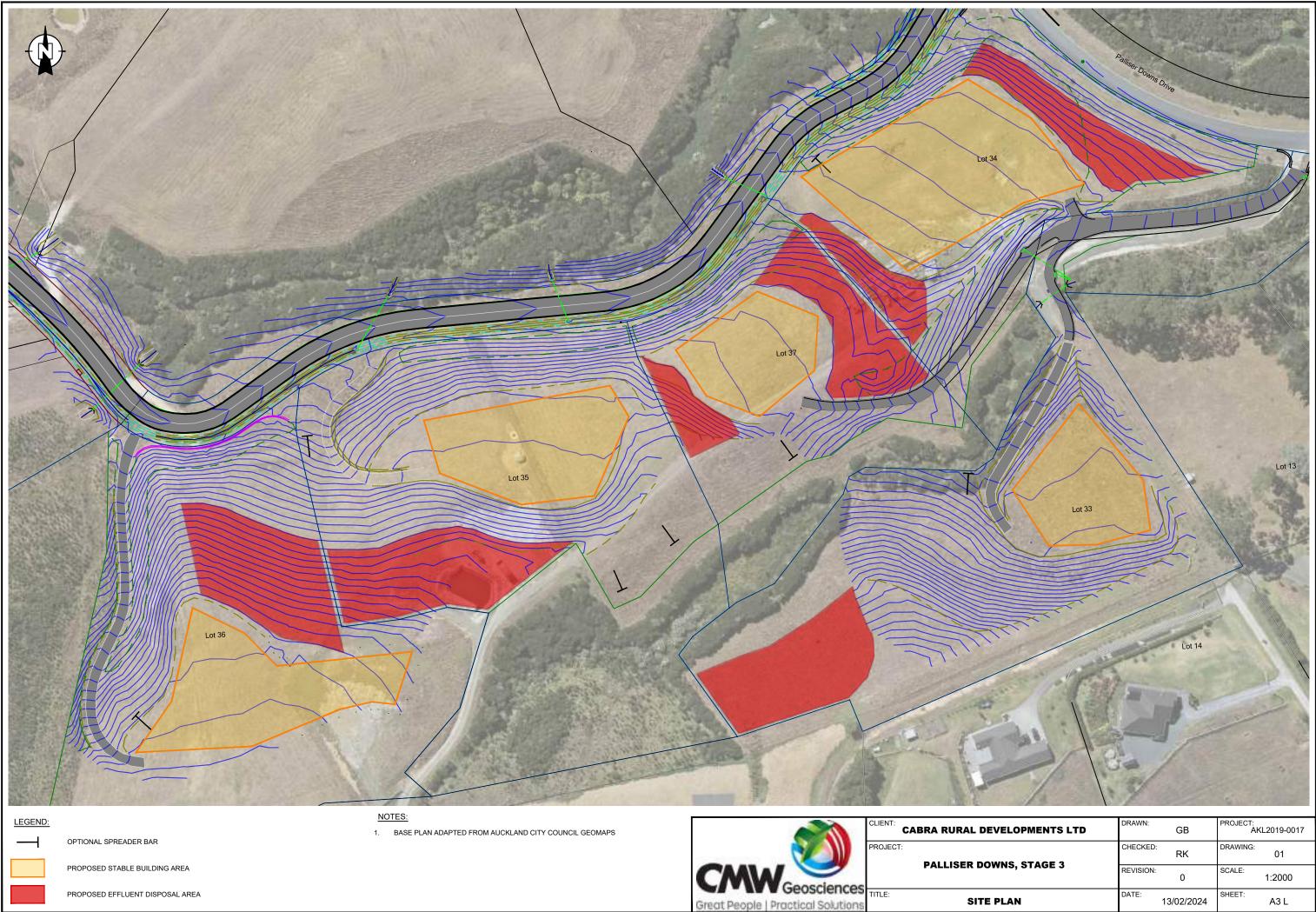

For and on behalf of CMW Geosciences

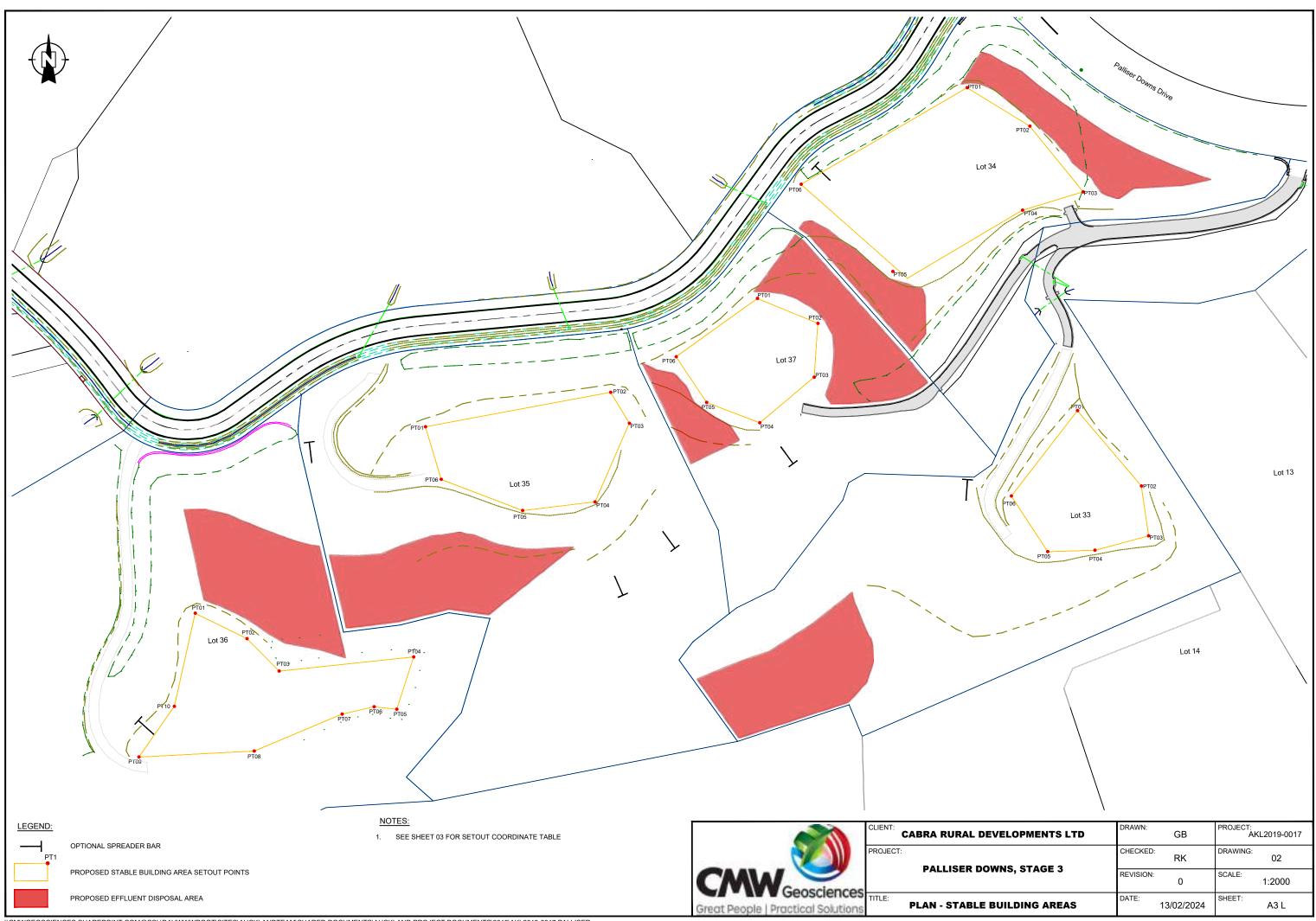

Knowles


Richard Knowles Principal Geotechnical Engineer CMEngNZ, CPEng




APPENDIX C: AS-BUILT DRAWINGS





\CCMWGEOSCIENCES.SHAREPOINT.COM@SSL\DAVWWWROOT\SITES\AUCKLANDTEAM\SHARED DOCUMENTS\AUCKLAND PROJECT DOCUMENTS\2019\AKL2019-0017 PALLISER DOWNS, STAGE 3\05 DRAWINGS\CAD\AKL2019-0017 24066 EDA AREAS.DWG

SITE PLA

OPMENTS LTD	DRAWN:	GB	PROJECT: AK	L2019-0017
S, STAGE 3	CHECKED:	RK	DRAWING:	01
5, 31AGE 5	REVISION:	0	SCALE:	1:2000
AN	DATE:	13/02/2024	SHEET:	A3 L



COMWGEOSCIENCES.SHAREPOINT.COM@SSL\DAVWWWROOT\SITES\AUCKLANDTEAM\SHARED DOCUMENTS\AUCKLAND PROJECT DOCUMENTS\2019\AKL2019-0017 PALLISER DOWNS, STAGE 3\05 DRAWINGS\CAD\AKL2019-0017 24066 EDA AREAS.DWG

STA	STABLE BUILDING AREA COORDINATE TABLE (NZTM)					
LOT REF	POINT REF	EASTING	NORTHING			
LOT 33	PT01	1741837.954	5949034.814			
-11-	PT02	1741862.364	5949005.975			
-11-	PT03	1741865.127	5948986.916			
-11-	PT04	1741844.628	5948981.417			
-11-	PT05	1741826.545	5948980.896			
-11-	PT06	1741812.665	5949002.190			
LOT 34	PT01	1741795.772	5949158.265			
-11-	PT02	1741819.755	5949143.528			
-11-	PT03	1741840.107	5949118.428			
-11-	PT04	1741816.915	5949111.420			
-11-	PT05	1741767.325	5949088.007			
-11-	PT06	1741732.286	5949121.337			
LOT 35	PT01	1741588.696	5949028.642			
-11-	PT02	1741659.502	5949041.804			
-11-	PT03	1741666.653	5949029.977			
-11-	PT04	1741653.514	5948999.926			
-11-	PT05	1741625.812	5948996.627			
-11-	PT06	1741594.724	5949008.530			
LOT 36	PT01	1741500.686	5948957.350			
-11-	PT02	1741520.482	5948947.624			
-11-	PT03	1741532.750	5948935.264			
-11-	PT04	1741584.197	5948940.648			
-11-	PT05	1741577.716	5948920.648			
-11-	PT06	1741569.061	5948921.620			
LOT 36	PT07	1741556.810	5948918.788			
-11-	PT08	1741523.204	5948904.671			
-11-	PT09	1741479.139	5948902.381			
-11-	PT10	1741492.674	5948921.742			
LOT 37	PT01	1741715.612	5949077.664			
-11-	PT02	1741738.685	5949068.166			
-11-	PT03	1741737.298	5949047.577			
-11-	PT04	1741716.492	5949030.139			
-11-	PT05	1741696.189	5949037.923			
-11-	PT06	1741684.511	5949055.422			

NOTES:

1. SEE SHEET 02 FOR SETOUT COORDINATE REFERENCES

LOPMENTS LTD	DRAWN:	GB	PROJECT: AKL2019-0017
S, STAGE 3	CHECKED:	RK	DRAWING: 03
5, 51AGE 5	REVISION:	0	SCALE: NTS
A COORDS TABLE	DATE:	13/02/2024	SHEET: A3 L

APPENDIX D: SOIL EXPANSIVITY

SOIL EXPANSIVITY				
Project:	Palliser Downs Stage 1A Rural Subdivision	Job Number:	AKL2019-0017AF Appendix D	
Site Address:	Palliser Downs Drive, Wainui	Client:	Cabra Rural Developments Ltd & Rahopara Farms Ltd	
Prepared by:	Richard Knowles	Reviewed by:	Chris Ritchie	

1 INTRODUCTION

Seasonal soil moisture variations within most clay-rich soils typically result in the soil swelling during winter months and then shrinking during summer months. These seasonal movements can cause issues such as cracking of concrete floors, brittle cladding and masonry walls or distortion of building frames causing doors and windows to jam from differential settlement. The effects are further compounded by local influences that worsen differential movements. These may include growth of high demand trees and shrubs that cause localised soil drying or either leaking pipes or tree root removal, leading to localised wetting.

The potential effects need to be managed in a combination of appropriate:

- classification of the level of risk (refer to Sections 2 to 4)
- design of foundations (refer to Section 4)
- management of soil moisture conditions by contractors during construction (refer to Section 5)
- management of landscaping and plantings by homeowners throughout a building's lifetime (refer to Section 6)

2 CLASSIFICATION METHODS AND REFERENCES

	References	
Reference	Test Methods Specified	Potential Assessment Outcomes
NZS3604-2011 Timber Framed Buildings	(Refer to "Definitions – Good Ground") Liquid Limit (LL) and Linear Shrinkage (LS) (NZS4402-1986 Test 2.2 and 2.6)	"Good Ground" OR Not "Good Ground" = LL>50 <u>and</u> LS>15
AS2870-2011 Residential Slabs and Footings	(Refer to Clause2.3.2) Shrink-Swell Indices (AS1289 Tests 7.1.1 to 7.1.3), OR Correlation with other clay index tests, OR Visual-tactile ID by a qualified person	(Refer to Table 2.3 and Section 3) Classes S, M, H1, H2, E with associated characterist ground movements and design solutions for 300 year return period drought.
BRANZ Report SR120A (2008) Soil Expansivity in the Auckland Region	Shrink-Swell Indices (AS1289 Tests 7.1.1 to 7.1.3) Recommended soil suction profile given	Use of AS2870 Classes
NZBC Acceptable Solution B1/AS1 (from Nov 2019) Applied amendments to the wording of NZS3604 to cover a method for a simple building form.	(Clause7.5.13) Specific requirements for the Acceptable Solution for Simple Buildings: Enquiry at local TA, and/ or a Cert. of Suitability per NZS4431, and/ or Soil tests by a qualified Engineer (Clause7.5.13.1.2) Soil tests are: Shrink-Swell Indices (AS1289 Tests 7.1.1 to 7.1.3)	Provides an Acceptable Solution for only a limited range of NZS3604 building sizes, shapes and materia on expansive soils. The provided acceptable design solution is only for concrete slab with perimeter foundation. Classes S, M, H and E. and Characteristic ground movement limits based on a 500 year return perior

Auckland Council Code of Practice for Land development and Subdivision (Chapter 2, version 2, May 2023) (ACCoPs)

(Clause2.5.2) Moisture Content (MC), Liquid Limit (LL), Plastic Limit (PL) (NZS4402-1986 Tests 2.1 to 2.4) plotted on plasticity chart (Plasticity Index, PI=LL-PL vs LL)

Use of NZBC B1/AS1 for foundation design. Any other specific design method to require Auckland Council or external review

Notes:

Liquid Limit test can be replicated by Cone Penetration Limit (CPL) Test, NZS4402-1986 Test 2.5.

Assessments using shrink-swell indices have been found to be unreliable in the Auckland context and are therefore not favoured in ACCOPs

B1/AS1 converted characteristic surface movements from 300 years in AS2870 to 500 years by multiplying values by 1.11.

B1/AS1 did not alter the NSZ 3604 "Good Ground" definition and did not repeal NZS3604 Informative Section 17 on expansive soils.

3 TESTING REGIME

Testing on 6 samples (1 from each Stage 1A lot plus one from future lot 44) was completed in accordance with the requirements of NZS 3604. All testing was completed by RoadTest Limited, a testing laboratory accredited by IANZ for the tests undertaken. Results are provided below.

ROADTEST

DETERMINATION OF THE WATER CONTENT, CONE PENETRATION LIMIT & LINEAR SHRINKAGE. TEST METHOD NZS 4402 : 1986 TEST 2.1, 2.5 & 2.6

Project Name	Palliser Downs		
		Project No :	23 0
CHENT	CMW Geosciences	Page :	1 0
Address :	PO Box 300206	Date of Order :	30.0
	Alberry, Auckland 0754		
	-	Sample Method :	Har
Attention :	Conor L	Sample Date :	27.0
		Sampled By	CM
		- 0.1 - 1.0	

Test performed on .

Hstory:

Test Details :

Whole Sample Natural

Sample No.	Location	Depth (m)	Cone Penetration (CPL)	Linear Shrinkage (LS)	Natural Water Content (%)			
9630	H402	0.4 - 0.8	88	22	44.6			
9840	HA04	04-08	73	18	44.3			
0850	HADB	0.4 - 0.8	83	19	43.2			
986Q	HADE	04-0.8	87	17	40.0			
9670	HA10	0.4 - 0.8	00	10	31.4			
9692	HAST	0.4-0.8	53	13	32.6			
-		-	-	-				
			-	-				

Comments

Tele Castles (16 Y (25 2 2		1
Tested By:	HC/DT	Date :	
Calculated By	HC	Dete :	
Checked By :	HC	Date :	

Figure 1: Laboratory Test Results.

Revision 1

and auger 7.96.23 MW Geoeciences

> 03.07.23 11.07.23 12.07.23

4 ASSESSMENT OF TEST RESULTS

The testing confirms that:

• All of the soils tested on Stage 1A were expansive in terms of the NZS 3604 definition and were therefore outside the definition of "good ground".

Assessment of Characteristic Surface Movements and Design Classes for NZS 3604 Compliant Buildings on Stable Building Platforms										
Lots	Assessed AS2870 Site Class / 300 Year Design Characteristic Surface Movement (Ys)	Anticipated Equivalent NZBC B1/AS1 Expansivity Class for Design / 500 Year Design Characteristic Surface Movement(Ys)								
33 to 35	M (moderately reactive) / 40mm	M / 44mm								
36 and 37	H1 (highly reactive) / 60mm	H / 78mm								

B1/AS1 provides an Acceptable Solution through NZS 3604 for foundation design applying to a limited range of compliant building sizes, shapes and materials and only for concrete floor design with strip footings. In all other cases, NZS 3604 directs the use of AS2870 or a specific design.

If AS2870 is used for the design solution, it must be noted that the characteristic surface movements in that code apply to a (less conservative) 300 year return period drought while B1/AS1 provides for a 500 year return period drought.

Prior to the introduction of the B1/AS1 design information in November 2019, minimum foundation depths recommended as appropriate by geotechnical consultants in Auckland for shallow footing design under AS2870 were typically of the order of 600mm for Class M and 750mm for Class H1.

5 SITE PREPARATION DURING CONSTRUCTION

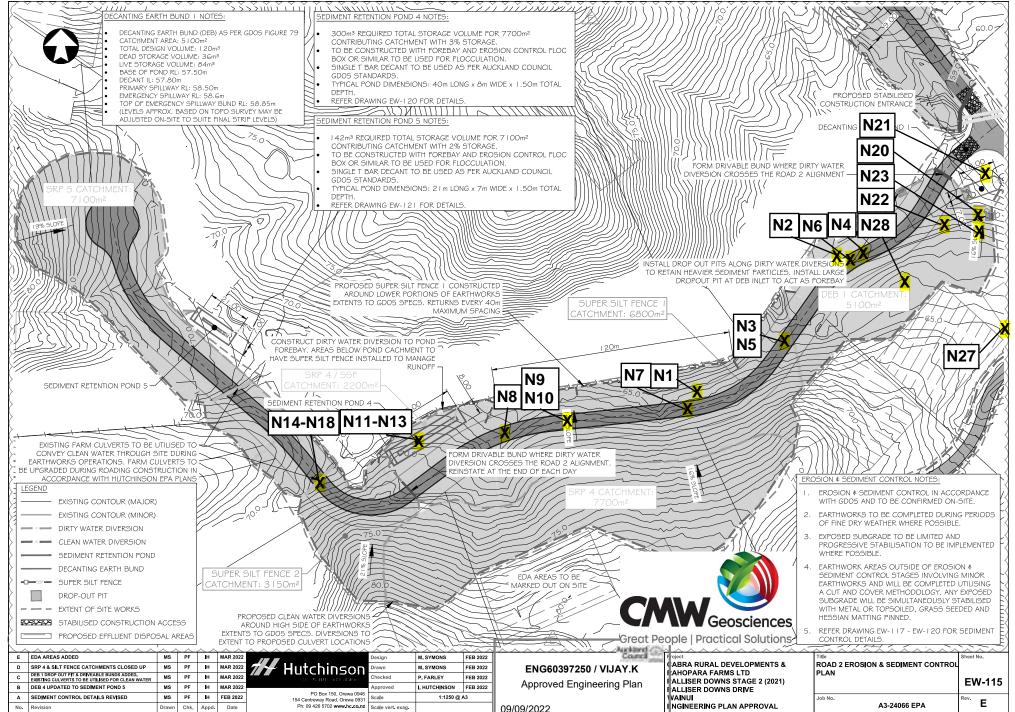
Foundation contractors need to be aware of the extreme damage potentially caused by expansive soils and the imperativeness of maintaining optimum moisture contents in all footing excavations and across building platform subgrades between the time of excavation and the pouring of concrete. Pouring foundations on dry, desiccated ground in summer months can lead to heaving and cracking, requiring extensive repairs or even complete house re-builds. Similarly, where perimeter foundations have been treated but floor slabs have been poured on dry ground, infiltration of moisture via pipe bedding can lead to localised heave, uplift and significant slab damage.

Remedial actions that may be appropriate include combinations of platform protection with a hard fill layer, pouring of a blinding layer of concrete in footing bases and soaking of the building platform with sprinklers for an extended period.

6 SITE MAINTENANCE AND LANDSCAPING

Landowners must be mindful of the potential impacts of planting or removal of high water demand plants. Where their roots may extend close to footings (i.e. within a lateral distance of 1.5 times the mature tree height), these actions can lead to significant settlement or heave damage.

For a comprehensive understanding of the potential effects of expansive soils, maintenance recommendations and vegetation management information, we strongly recommend that land owners obtain a copy of CSIRO publication BTF 18 (Foundation Maintenance and Footing Performance – A Homeowners Guide) that is available online.


APPENDIX E: FIELD TEST DATA

LF11 Rev.15 Soil Field Density NDM Direct Transmission with VSS Report (Cohesive Soils)									Auckland Laboratory CMW Geosciences (NZ) Ltd Partnership 11/63, Arrenway Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632												
Project:		Palliser Downs													Test Metho	ds:	Notes:	Solid Densit	y:		Assumed
Project No:		AKL2019-0017																Solid Densit	y Data Sourc	e:	N/A
Location:		Wainui													NZS 4407 20)15 Test 3.1 🔇)	Testing Loca	ations Selecte	ed By:	CMW Field Staff
Report No:		AKL2019-0017LAA Rev.1													NZS 4407 20)15 Test 4.2		Only samp	oles <2.0mm	will be consid	ered for endorsed
Report Date:		6/03/2024													NZGS:Augus	t 2001		testing			
Client:		Cabra Rural Developments Limited																1 Blade size	e of 19mm use	d.	
Client Address	5:	3 Alice Ave, Orewa 0931 Measurements mark and are outside the se									s marked * are not accredited e the scope of the laboratories accreditation										
		Test Location*				Vane	D	l	n-situ Va	ne Shear	Strengt	hs			Fie	eld and Labora	atory Testing D	Data			
Date Sampled	Sample No.	Test Site	RL/Details	Soil Description*	Solid Density (t/m³) *	Head #	Blade #	Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³) **	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth (mm)	Oven Water Content (%)	Oven Dry Density (t/m ³)	Oven Calculated Air Voids (%) *	Comments
4/04/2022	N1	Undercut filling	-	CLAY	2.70	1824	1824	84	135	113	138	118	1.72	1.19	44.5	3	300				
	N2	Undercut filling	-	CLAY	2.70	1824	1824	154	206	235	154	187	1.84	1.38	33.7	2	300	27.7	1.44	7	
8/04/2022	N3	Road 2	-	CLAY	2.70	1824	1824	151	145	154	171	155	1.75	1.22	43.9	2	300	40.1	1.25	4	
	N4	Road 2	-	CLAY	2.70	1824	1824	154	148	138	196	159	1.86	1.40	33.4	2	300	30.9	1.42	3	
11/04/2022	N5	Road 2	-	CLAY	2.70	1824	1824	235	235	235	235	235	1.75	1.26	39.0	5	300	40.8	1.24	4	
29/04/2022	N6	Road 2	-	CLAY	2.70	1824	1824	235	132	193	203	191	1.78	1.20	47.7	-2	300	45.4	1.22	-1	
	N7	Road 2	-	CLAY	2.70	1824	1824	209	235	193	203	210	1.76	1.25	41.5	2	300	40.5	1.26	3	
3/05/2022	N8	Road 2	-	CLAY	2.70	1824	1824	235	235	219	203	223	1.77	1.27	39.5	3	300	37.0	1.29	4	
2/05/2022	N9	Road 2	-	CLAY	2.70	1824	1824	158	171	171	200	175	1.87	1.39	34.2	1	300	34.1	1.39	1	
4/05/2022	N10	Road 2	-	CLAY	2.70	1824	1824	235	235	235	219	231	1.82	1.35	34.5	3	300	31.7	1.38	5	
12/05/2022	N11	Pond	-200mm	CLAY	2.70	1824	1824	106	122	100	100	107	1.79	1.31	36.9	3	300	37.2	1.31	3	
	N12	Pond	-1000mm	CLAY	2.70	1824	1824	126	161	154	138	145	1.82	1.34	35.8	3	300	43.7	1.26	-2	
	N13	Pond	-1000mm	CLAY	2.70	1824	1824	135	138	235	235	186	1.83	1.41	29.3	6	300	-	-	-	No sample taken
25/05/2022	N14	Culvert fill	-	CLAY	2.70	1824	1824	106	109	97	100	103	-	-	-	-	-	-	-	-	No sample taken
	N15	Culvert fill	-	CLAY	2.70	1824	1824	122	132	138	154	137	1.75	1.26	39.4	4	300	40.2	1.25	4	
	N16	Culvert fill	-	CLAY	2.70	1824	1824	203	206	154	206	192	1.75	1.19	46.8	C	300	39.7	1.25	4	
26/05/2022	N17	Culvert 1	-	CLAY	2.70	1824	1824	206	119	64	119	127	1.77	1.24	42.9	1	300				No sample taken
	N18	Culvert 1	-	CLAY	2.70	1824	1824	138	206	235	235	204	1.80	1.38	29.8	7	300	28.9	1.39	8	
27/10/2022	N20	Lot 34 Undercut 1st half	+1000mm	CLAY	2.70	2080	2080	140		145	151	145	1.84	1.40	31.7	4	300	28.5	1.43	6	
29/10/2022		Lot 34 Batter edge/HP edge	+500mm	CLAY	2.70	2080	2080	140		145	140	145	1.86	1.38	35.1	1	. 300	30.0			
7/11/2022		Lot 34 Undercut area 2	+800mm	CLAY	2.70	2992	2992	155		141	124	144	1.82	1.38		5			1.39	6	
16/11/2022		Lot 34	-	CLAY	2.70	1824	1824	123		95		117	1.90	1.44	31.5	1	. 300		-	-	No sample taken
29/11/2022		Lot 34	-	CLAY Fill	2.70	1195	1195	160		139		161	1.79	1.36	30.9	7	300				
	N28	Lot 34	-	CLAY Fill	2.70	1195	1195	160		186		181	1.83	1.36	34.3	3	500	32.9			
23/02/2023		Lot 33	-700mm	CLAY Fill	2.70	2992	2992	197	183	141	155	169	1.88	1.38	36.2	-1					
5/03/2023		Road 2	+600mm	ENG CLAY Fill	2.70	2080	2080	151	161	158	165	159	1.77	1.25	41.1	2	300		1.26		
13/03/2023		Lot 33 BP edge	+1000mm	ENG CLAY Fill	2.70	2080	2080	140	140	140	140	140	1.80	1.31	36.8	3	300				· · · · ·
This report re	eplaces repo	be reproduced in full. orts numbered AKL2019-0017L	AA Rev.0 - Ma s	• •	no change t	to point l	ocation		4/2022				•• Gauge Wet I	Densities outsid	e of the calibrate	ed range of 1.75	4 to 2.611 t/m³ a	are not accredite	a and are outsid	the laboratori	s scope of accreditation.
Created By:				Date:					4/2022												
Checked By:		D)- IIV4		Date:					3/2024												Dago: 1 of 3
Authorised S	ignatory (KI	TP): JLM		Date:				6/0.	3/2024												Page: 1 of 2

AKL2019-0017LAA Rev.1

Palliser Downs

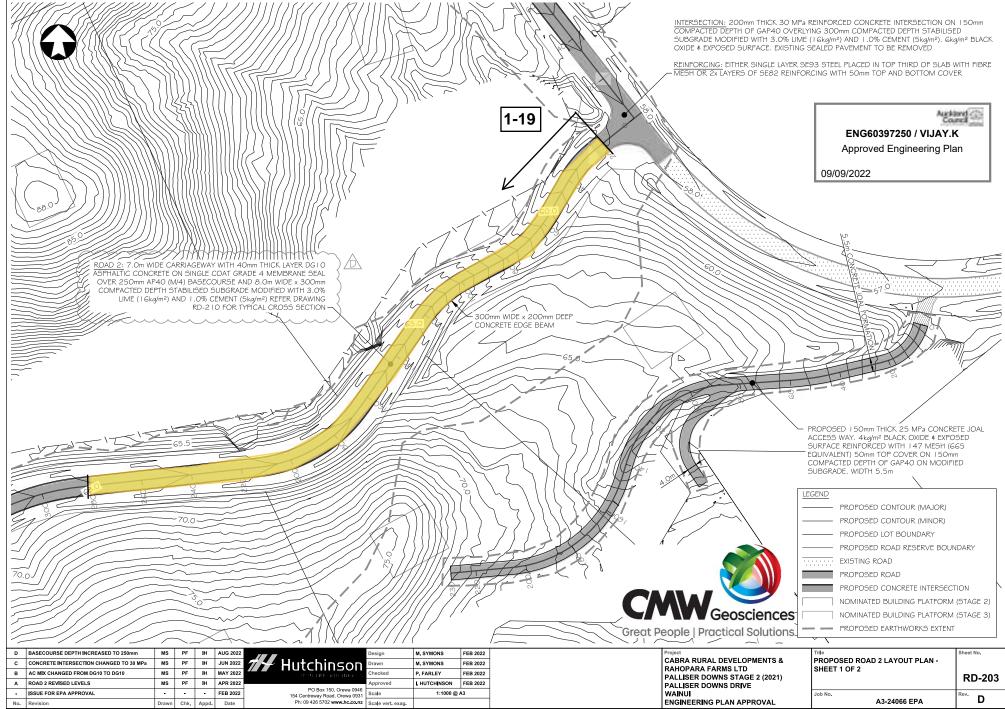
6/03/2024

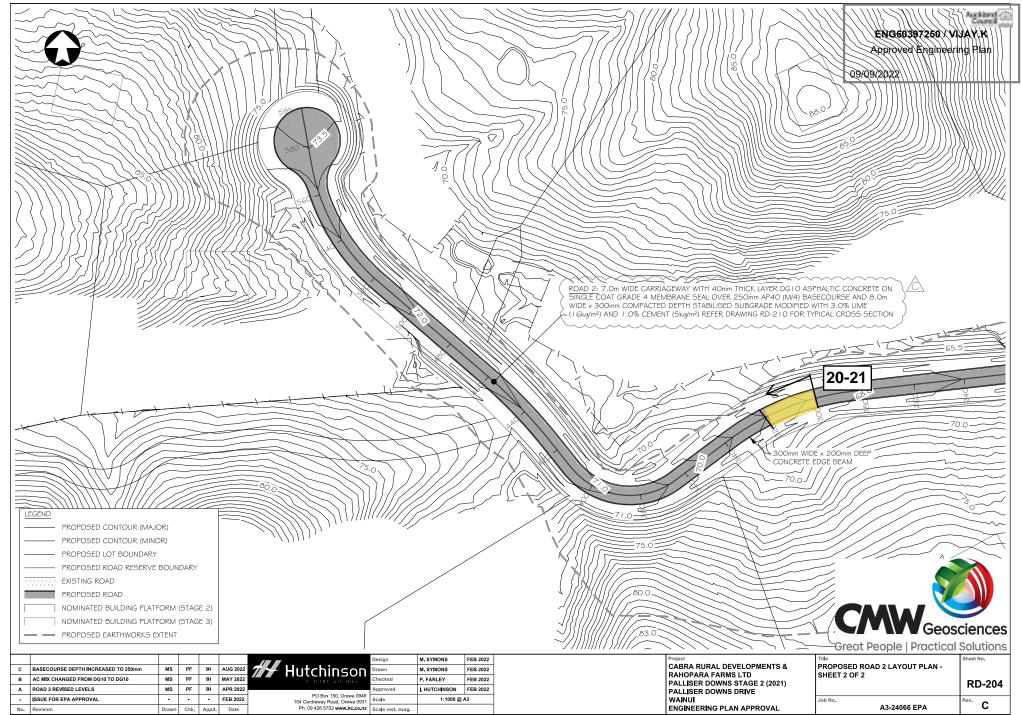
CMW			LF14 Rev.13	Dynam		Penetra 5 4402: 1988 Test	ation (DCP) Test Report							
Project:		Palliser Downs												
Project No:			Auckland Labor CMW Geotechi	atory nical NZ Limited										
Location:		Wainui					ay Drive, Rosedal , Albany, Aucklar							
Report No:			Phone: +64 (09) 4144 632										
Test Date:		26/05/2022				Testing Locatio	ns Selected By:		CMW Field Staf	f				
Tested By:		LSW/PH												
Client:		Cabra Rural Develo	pment Limited			-	2 Minute	* Equivalent CB	* Equivalent CBR Values are not					
Client Address:		9B/30 Foundry Roa	d, Silverdale, Auckla	ind			2 222	 Approximation of the 	accredited and are outside the scope of the laboratory's accreditation					
CBR Test Calculation:		Austroad (2010)												
Test No	2	21												
Test Location	Ro	ad 2												
Chainage & Offset	СН	320 L												
Material & Layer	Fil	I SG												
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*				
0 - 100	1	2												
100 - 200	2	4												
200 - 300	2	4												
300 - 400	2	4												
400 - 500	3	6												
500 - 600	6	13												
600 - 700	5	10												
700 - 800	7	15												
800 - 900	7	15												
900 - 1000		10												
Test No														
Test Location														
Chainage & Offset														
Material & Layer														
Depth														
0 - 100														
100 - 200														
200 - 300														
300 - 400														
400 - 500														
500 - 600														
600 - 700														
700 - 800														
800 - 900														
900 - 1000					Ī	T			Ī					
This report replaces rep	orts numbered	AKL2019-0017LA	B Rev.0 - Maste	r Site Plan upda	ited, no change	to point locatio	This	report should on	ly be reproduced i	n full				
Created by:	RS			Date:	25/05/2022				using AUSTROADS (.3, For Fine Grained					
Checked by:	JP			Date:	6/03/2024				ined cohesive soils c					
Authorised Signatory:	JLM			Date:	6/03/2024				Page 3 of 4					

CMW	

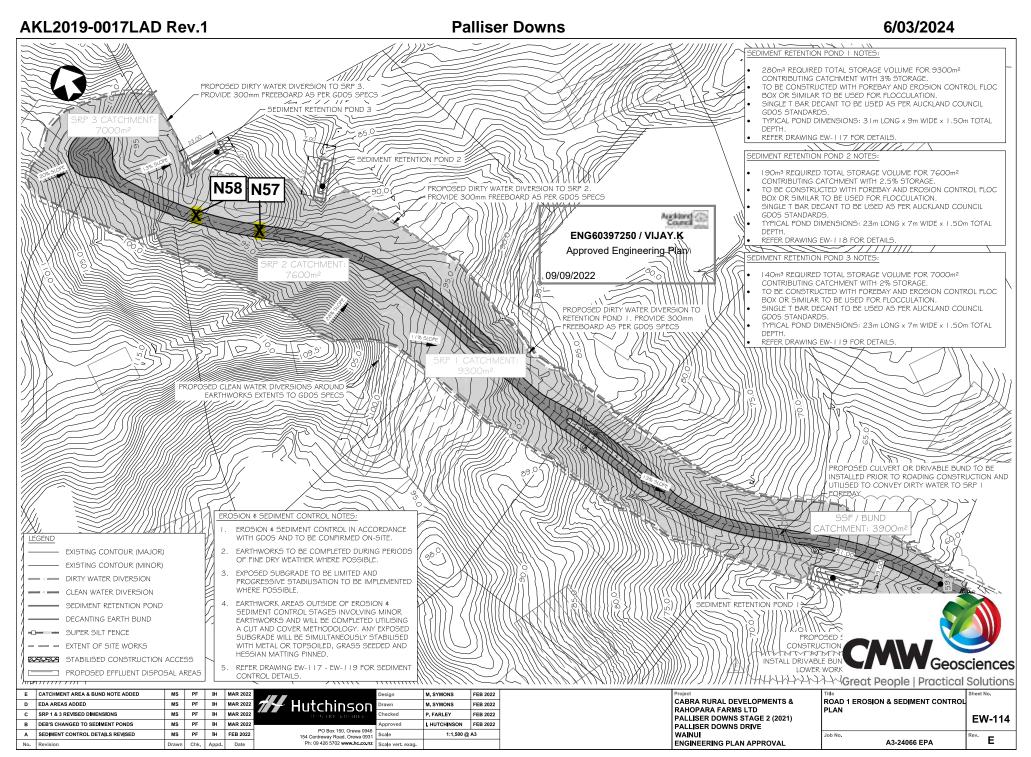
LF14 Rev.13 Dynamic Cone Penetration (DCP) Test Report NZ5 4402: 1988 Test 6.5.2

CMW	clencin				NZS	6 4402: 1988 Test (6.5.2				
Project:		Palliser Downs				Auckland Labor	atory				
Project No:		AKL2019-0017				CMW Geotechr	•				
Location:		Wainui					ıy Drive, Rosedal . Albany, Aucklar				
Report No:		AKL2019-0017LAB I	Rev.1			Phone: +64 (09)	4144 632				
Test Date:		26/05/2022				Testing Location	ns Selected By:		CMW Field Staf	MW Field Staff	
Tested By:		LSW/PH									
Client:		Cabra Rural Develo	pment Limited			and the second	* hit suffered	description int	* Equivalent CB	R Values are not	
Client Address:		9B/30 Foundry Roa	d. Silverdale. Auckla	nd		LANG	secondaria in secondaria	na naduritina Domiti Daviti	accredited and are	outside the scope of 's accreditation	
		Austroad (2010)	-,,,			1 and 1					
CBR Test Calculation:				2		13		4		.5	
Test No		1		2				.4			
Test Location		ad 2		ad 2		ad 2		ad 2		ad 2	
Chainage & Offset		120 L		40 R		160 L		.80 R		200 L	
Material & Layer	CH SG	Natural	Fill	SG	Fil	l SG	Fill	SG	Fil	SG	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	1	2	2	4	1	2	2	4	3	6	
100 - 200	3	6	2	4	2	4	2	4	4	8	
200 - 300	2	4	3	6	2	4	3	6	3	6	
300 - 400	2	4	2	4	2	4	2	4	5	10	
400 - 500	3	6	2	4	2	4	3	6	5	10	
500 - 600	4	8	2	4	2	4	3	6	4	8	
600 - 700	3	6	2	4	2	4	4	8	3	6	
700 - 800	3	6	3	6	2	4	8	18	3	6	
800 - 900	4	8	4	8	2	4	6	13	3	6	
900 - 1000											
Test No	1	16	1	.7	1	18	1	.9	2	20	
Test Location	Roa	ad 2	Roa	ad 2	Roa	ad 2	Roa	ad 2	Roa	ad 2	
Chainage & Offset	CH 2	220 R	CH 2	240 L	CH 2	260 R	CH 2	280 L	CH 3	300 R	
Material & Layer	Fil	SG	Fill	SG	Fil	l SG	Fill	SG	Fill	SG	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	2	4	2	4	2	4	1	2	1	2	
100 - 200	3	6	4	8	3	6	4	8	2	4	
200 - 300	3	6	2	4	3	6	2	4	3	6	
300 - 400	2	4	3	6	3	6	2	4	2	4	
400 - 500	2	4	5	10	4	8	2	4	2	4	
500 - 600	2	4	5	10	3	6	2	4	2	4	
600 - 700	3	6	5	10	4	8	2	4	4	8	
700 - 800	4	8	9	20	5	10	2	4	3	6	
800 - 900	4	8	14	20+	8	18	2	4	5	10	
900 - 1000											
This report replaces re	ports numbered	AKL2019-0017LA	B Rev.0 - Maste	r Site Plan upda	ted, no change	to point locatior			ly be reproduced i		
Created by:	RS			Date:	25/05/2022		Pavement Technol	ogy Part 2, Figure 5	using AUSTROADS (.3, For Fine Grained	Cohesive Soils, and	
Checked by:	JP			Date:	6/03/2024		are	relevant to fine gra	ined cohesive soils c	only.	
Authorised Signatory:	JLM			Date:	6/03/2024				Page 2 of 5		

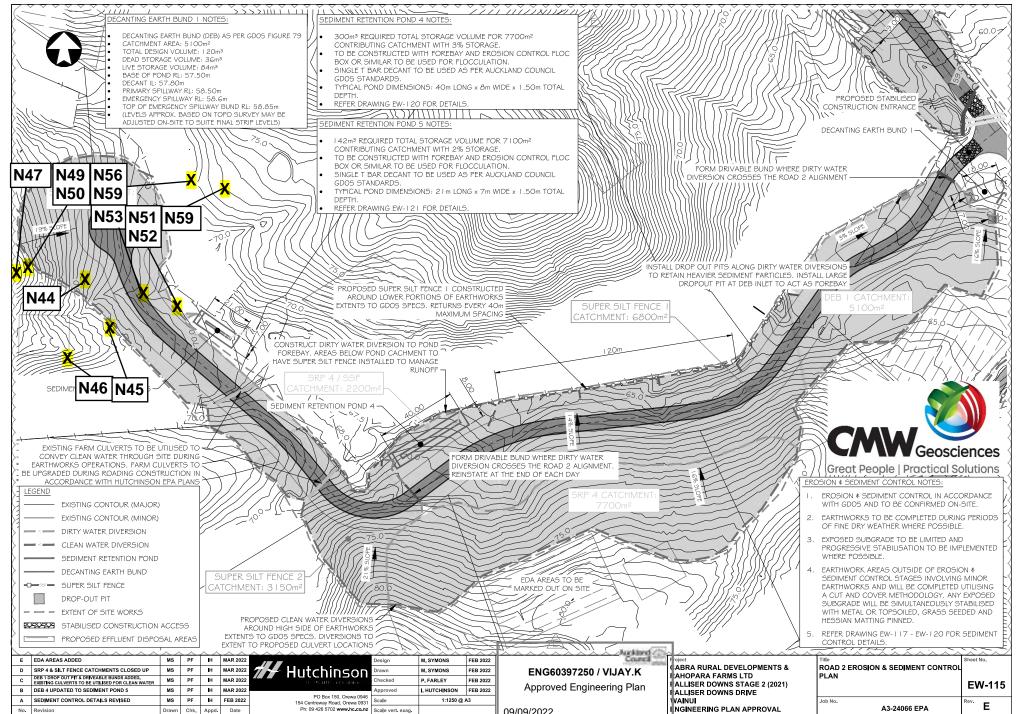

CMW	

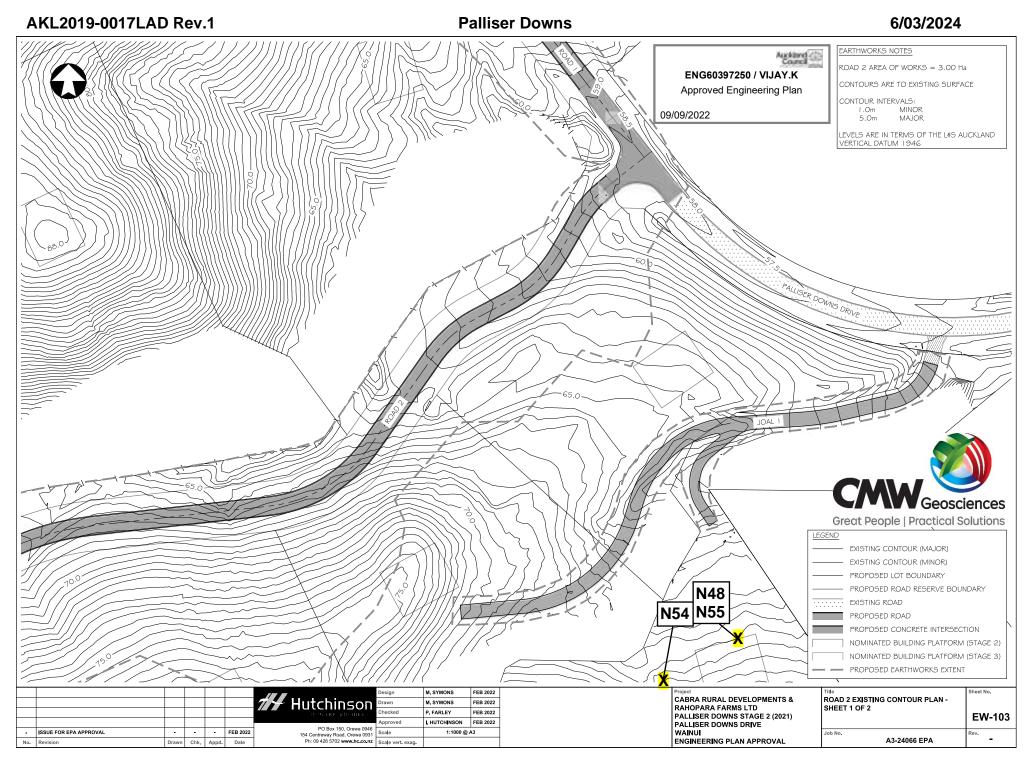

LF14 Rev.13 Dynamic Cone Penetration (DCP) Test Report NZ5 4402: 1988 Test 6.5.2

CMWGees	denom				NZS	6 4402: 1988 Test (6.5.2				
Project:		Palliser Downs				Auckland Labor	atory				
Project No:		AKL2019-0017				CMW Geotechr	nical NZ Limited				
Location:		Wainui					iy Drive, Rosedal Albany, Aucklar				
Report No:		AKL2019-0017LAB	Rev.1			Phone: +64 (09)	4144 632				
Test Date:		26/05/2022				Testing Location	ns Selected By:		CMW Field Staff		
Tested By:		LSW/PH									
Client:		Cabra Rural Develo	pment Limited			-	Alt-markers	Robert Street	* Equivalent CBR Values are not		
Client Address:		9B/30 Foundry Roa	d, Silverdale, Auckla	ind)	A VICE BUILDING	accredited and are	outside the scope of 's accreditation	
CBR Test Calculation:		Austroad (2010)									
Test No		1		2		3		4		5	
Test Location	Ro	ad 2	Roa	ad 2	Ro	ad 2	Roa	ad 2	Roa	ad 2	
Chainage & Offset		20 L		30 R		40 L		50 R		60 L	
Material & Layer		Natural	-	Natural		Natural	_	Natural		Natural	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	3	6	2	4	3	6	3	6	2	4	
100 - 200	5	10	3	6	5	10	12	20+	2	4	
200 - 300	2	4	4	8	5	10	7	15	2	4	
300 - 400	1	2	4	8	3	6	4	8	4	8	
400 - 500	2	4	1	2	0	0	2	4	2	4	
500 - 600	1	2	2	4	1	2	3	6	2	4	
600 - 700	1	2	1	2	2	4	2	4	3	6	
700 - 800 800 - 900	2	4	2	4	2	4	4	6	1	2	
900 - 1000	2	4	Z	4	2	4	4	ð	2	4	
Test No		6		7		8		9	1	.0	
Test Location		ad 2		, ad 2		ad 2		ad 2		Road 2	
Chainage & Offset		70 R		80 L		90 R		100 L		CH 110 R	
Material & Layer		Natural		Natural		Natural		Natural		Natural	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	1	2	3	6	3	6	3	6	2	4	
100 - 200	8	18	3	6	4	8	4	8	2	4	
200 - 300	4	8	4	8	3	6	4	8	4	8	
300 - 400	3	6	2	4	2	4	3	6	3	6	
400 - 500	3	6	3	6	2	4	3	6	3	6	
500 - 600	3	6	2	4	2	4	4	8	3	6	
600 - 700	4	8	2	4	2	4	4	8	3	6	
700 - 800	5	10	2	4	2	4	4	8	2	4	
800 - 900	4	8	2	4	2	4	4	8	2	4	
900 - 1000											
This report replaces re	ports numbered	AKL2019-0017LA	B Rev.0 - Maste	r Site Plan upda	ted, no change	to point locatior	This	report should on	ly be reproduced i	n full	
Created by:	RS			Date:	25/05/2022		Pavement Technol	ogy Part 2, Figure 5	l using AUSTROADS (.3, For Fine Grained	Cohesive Soils, and	
Checked by:	JP			Date:	6/03/2024		are	relevant to fine gra	ined cohesive soils c	nly.	
Authorised Signatory:	JLM			Date:	6/03/2024				Page 1 of 5		



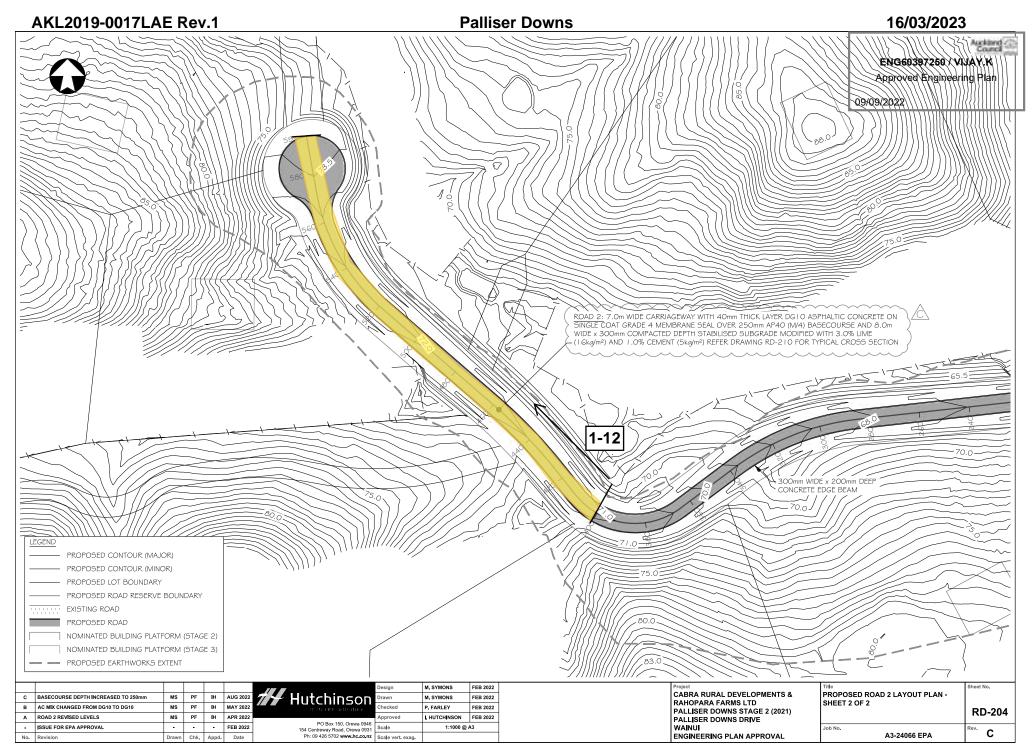
Palliser Downs


CM	WGeoach	Inces	Soil Field	Density NDM Di	irect Tra	nsmiss	sion w	vith V	SS Re	eport	(Cohe	sive S	Soils)		11/63, Arrenv	hnical NZ Limi vay Drive, Ros 16, Albany, Aud	ted edale, NZ 0632 ckland, NZ 075				
Project:		Palliser Downs													Test Metho	ds:	Notes:	Solid Densit	:y:		Assumed
Project No:		AKL2019-0017																Solid Densit	y Data Sourc	e:	N/A
Location:		Wainui													NZS 4407 20)15 Test 3.1 (>	Testing Loca	ations Selecte	ed By:	CMW Field Staff
Report No:		AKL2019-0017LAD Rev.1													NZS 4407 20	15 Test 4.2		Only sample	ples <2.0mm	will be consid	dered for endorsed
Report Date:		6/03/2024													NZGS:Augus	t 2001		testing			
Client:		Cabra Rural Developments Limit	ted															 Blade size 	e of 19mm use	d.	
Client Address	:	3 Alice Ave, Orewa 0931															Test res	whe inducted as no feed one substate the of the inducement's feation			ts marked * are not accredited le the scope of the laboratories accreditation
		Test Location*	ı			Van	e ID	h	n-situ Va	ne Shear	Strength	ns			Fie	eld and Labor	atory Testing I	Data			
Date Sampled	Sample No.	Test Site	RL/Details	Soil Description*	Solid Density (t/m ³) *	Head #	Blade #	Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³) **	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	-	e Oven Water) Content (%)	Oven Dry Density (t/m ³)	Oven Calculated Air Voids (%) *	Comments
16/01/2023	N44	Lot 101	-	CLAY Fill	2.70	1702	1702	162	182	169	169	171	1.93	1.49	29.5	1	1 300	34.5	1.43	-3	
	N45	Lot 101	-	CLAY Fill	2.70	1702	1702	UTP	UTP	UTP	UTP	UTP	1.94	1.51	28.6	1	1 300	25.9	1.54	3	
23/02/2023	N46	Lot 101	-	CLAY Fill	2.70	2992	2992	169	155	155	141	155	1.79	1.36	31.5	7	7 300	30.4	1.38	7	,
	N47	Lot 101	-	CLAY Fill	2.70	2992	2992	197	197	141	191	182	1.81	1.36	33.3	5	5 300	32.5	1.36	5	,
2/03/2023	N49	Lot 101 Rock undercut	+1000mm	CLAY Fill	2.70	1702	1702	UTP	UTP	UTP	UTP	UTP	2.01	1.71	18.1	6	5 300	- ס	-		No sample taken
	N50	Lot 101 Rock undercut	+500mm	CLAY Fill	2.70	1702	1702	UTP	UTP	UTP	UTP	UTP	1.96	1.64	19.6	7	7 300	20.9	1.62	e	5
6/03/2023	N51	Lot 55	+1500mm	CLAY Fill	2.70	1702	1702	UTP	UTP	141	177	159+	1.79	1.34	33.7	5	5 300	35.5	1.32	4	k l
	N52	Lot 55	+1000mm	CLAY Fill	2.70	1702	1702	UTP	UTP	UTP	UTP	UTP	1.84	1.39	32.3	4	4 300	31.9	1.39	4	l l
15/03/2023	N55	Lot 55 shear key 1st lift	-	CLAY Fill	2.70	1702	1702	182	145	139	142	152	1.74	1.27	37.1	e	5 300	43.1	1.22	2	
29/03/2023		Lot 55 shear key	-	CLAY Fill	2.70	1702	1702	142	139	142	149	143	1.77	1.26		2	2 300				
5/04/2023		Road 1	-	CLAY Fill	2.70	1702	1702	UTP	UTP	UTP	UTP	UTP	1.77	1.37	29.4	9	300				
	N58	Road 1	-	CLAY Fill	2.70	1702	1702	UTP	UTP	UTP	UTP	UTP	1.71	1.22	39.9	6	5 300		1.17	3	
20/04/2023	N59	Lot 55 Shear key	Final lift	CLAY Fill	2.70	1702	1702	UTP	UTP	UTP	UTP	UTP	1.76	1.33	32.4		7 300	-	-		No sample taken
•	,	e reproduced in full. orts numbered AKL2019-00	- 17LAD Rev.0 -	Master Site Plan upda	ated, no cha	inge to p	oint loc	ations					** Gauge Wet	Densities outsic	e of the calibrat	ed range of 1.7	54 to 2.611 t/m ³	are not accredit	ted and are outs	ide the laborato	ries scope of accreditation.
Created By:	RS			Date:				28/02	2/2023												
Checked By:	JP			Date:				6/03	3/2024												
Authorised Si	gnatory (KT	P): JLM		Date:				6/03	3/2024												Page: 1 of 4



AKL2019-0017LAD Rev.1

Palliser Downs


6/03/2024

CMW)) clences	LF	14 Dyna	amic Co		tration (5 4402: 1988 Test (-	st Repor	t (Rev 1	6)	
Project:		Palliser Downs				A set la set la base					
Project No:		AKL2019-0017				Auckland Labor CMW Geotechr	nical NZ Limited				
Location:		Wainui					ay Drive, Rosedal , Albany, Aucklar				
Report No:		AKL2019-0017LAE	Rev.1			Phone: +64 (09)) 4144 632				
Test Date:		16/03/2023				Testing Location	ns Selected By:		CMW Field Staff		
Tested By:		PH/DW									
Client:		Cabra Rural Develo	pments Limited			Personale.		a indicated as not d'une catalde the	* Equivalent CB	R Values are not	
Client Address:		3 Alice Ave, Orewa	0931			IANA		fue loboantory's		outside the scope of 's accreditation	
CBR Test Calculation:		Austroads (2010) (1	ine grained cohesiv	e)		No. And					
Test No	:	l 11	1	12							
Test Location	Ro	ad 2	Ro	ad 2							
Chainage & Offset	CH580 ·	+5m KL R	CH600 +	1.5m KL C							
Material & Layer	Post St	abilised	Post St	abilised							
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	7	15	8	18							
100 - 200	4	8	6	13							
200 - 300	4	8	4	8							
300 - 400	3	6	3	6							
400 - 500	2	4	2	4							
500 - 600	2	4	2	4							
600 - 700	2	4	2	4							
700 - 800	2	4	2	4							
800 - 900	2	4	2	4							
900 - 1000											
Test No											
Test Location											
Chainage & Offset											
Material & Layer		1		1		1		1		1	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100											
100 - 200											
200 - 300											
300 - 400											
400 - 500											
500 - 600											
600 - 700											
700 - 800											
800 - 900											
900 - 1000											
This report replaces rep	oorts numbered	AKL2019-0017LA	AD Rev.0 - Maste	er Site Plan upda	ated, no change	to point location	This	report should onl	y be reproduced i	n full	
Created by:	RS			Date:	20/03/2023			R values are taken from avement Structural De fine graine	sign, Austroads 2010.		
Checked by:	JP			Date:	6/03/2024						
Authorised Signatory (KTF	?):	JLM		Date:	6/03/2024				Page 2 of 3		

CMW	Dences	LF	14 Dyna	amic Co		tration (5 4402: 1988 Test (st Repor	t (Rev 1	6)		
Project: Project No: Location: Report No:	tokitors	Palliser Downs AKL2019-0017 Wainui AKL2019-0017LAE I	Rev.1			Auckland Labor CMW Geotechr 11/63, Arrenwa PO Box 300206 Phone: +64 (09)						
Test Date:		16/03/2023				Testing Location	ns Selected By:		CMW Field Staff			
Tested By:		PH/DW										
Client:		Cabra Rural Develo	pments Limited			+COMPACE	Test result	e indicated as not		R Values are not		
Client Address:		3 Alice Ave, Orewa	0931			IANG accedited on autida to scope of the obseriory's acceditation				outside the scope of 's accreditation		
CBR Test Calculation:		Austroads (2010) (f	ine grained cohesiv	2)		ALCONG.						
Test No	:	1		2		3		4		5		
Test Location	Roa	ad 2	Ro	ad 2	Ro	ad 2	Ro	ad 2	Ro	ad 2		
Chainage & Offset	CH4	100 R	CH420	+1.5m L	CH440	+1.5m R	CH460	+1.5m L	CH480	+1.5m R		
Material & Layer	Post St	abilised	Post St	abilised	Post St	abilised	Post St	abilised	Post St	abilised		
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*		
0 - 100	8	18	12	20+	9	20	7	15	10	20+		
100 - 200	5	10	6	13	5	10	5	10	5	10		
200 - 300	5	10	4	8	3	6	4	8	5	10		
300 - 400	4	8	3	6	3	6	4	8	3	6		
400 - 500	3	6	2	4	2	4	3	6	2	4		
500 - 600	2	4	2	4	1	2	2	4	2	4		
600 - 700	3	6	2	4	1	2	2	4	2	4		
700 - 800 800 - 900	2	4	2	4	1	2	1	2	2	4		
900 - 1000	2	4	2	4	1	2	1	2	2	4		
Test No		6		7		8		9		LO		
Test Location		ad 2	Ro	ad 2	Ro	ad 2	Road 2		d 2 Road 2			ad 2
Chainage & Offset	CH500 ·	+1.5m L	CH520	+1.5m L	CH450	+1.5m R	CHS	60 C	CH580	+5m KL L		
Material & Layer	Post St	abilised	Post St	abilised	Post St	abilised	Post St	abilised	Post St	abilised		
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*		
0 - 100	8	18	8	18	11	20+	6	13	8	18		
100 - 200	5	10	4	8	6	13	4	8	4	8		
200 - 300	4	8	3	6	4	8	3	6	3	6		
300 - 400	3	6	3	6	4	8	3	6	3	6		
400 - 500	2	4	2	4	4	8	2	4	2	4		
500 - 600	2	4	2	4	3	6	2	4	2	4		
600 - 700	2	4	2	4	2	4	2	4	2	4		
700 - 800	2	4	2	4	2	4	2	4	2	4		
800 - 900	2	4	2	4	2	4	2	4	2	4		
900 - 1000		<u> </u>	2	4	2	4	2	4	<u> </u>			
This report replaces rep Created by:	oorts numbered a	AKL2019-0017LA	ND Rev.0 - Maste	r Site Plan upda Date:	20/03/2023	to point locatio	* Equivalent CB	report should onl	n Fig 5.3, Austroads Gi	uide to Pavement		
Checked by:				Date:			Technology, Part 2: P	avement Structural De fine graine	sign, Austroads 2010. d soils only.	Values are relevant t		
Authorised Signatory (KTP	JP			Date:	6/03/2024				Page 1 of 3			

APPENDIX F: STABILITY SUPPLEMENT

SITE INVESTIGATION AND SLOPE STABILITY ASSESSMENT

Project:	Palliser Downs Stage 1A	Job Number:	AKL2019-0017
Site Address:	Palliser Downs Drive, Wainui	Client:	Cabra Rural Developments Limited/Rahopara Farms Limited
Prepared by:	Navneel Karan	Reviewed by:	Richard Knowles

INTRODUCTION 1

CMW Geosciences (CMW) was engaged by Cabra Rural Developments Limited / Rahopara Farms Limited to carry geotechnical investigations of a site located at Palliser Downs, which is being considered for a rural subdivision, in particular Lots 33 to 37 comprising Stage 1A, to verify earthworks meet geotechnical requirements.

The scope of work and associated terms and conditions of our engagement were detailed in our services proposal letter referenced AKL2019-0017AB, Rev. 0 dated 31 May 2021.

This report is to support a resource consent application to Auckland Council and provides the basis for elements of the Statement of Professional Opinion provided in the Geotechnical Completion Report AKL2019-0017AF Rev. 0, dated 6 September 2023.

SITE DETAILS 2

The site comprises an area of approximately 111,1260 m² and is located Palliser Downs Drive, Weranui as shown in Figure 1.

Details of the site are as follows:

- Legal description is Lot 1 DP 556774, Lot 2 DP 556774.
- Lots 33 to 37 at the southern end of the development comprise Stage 1A.
- The site is bound by Palliser Downs Drive and residential dwellings east, rural land to the north, west and south.
- Historical aerial photographs¹ show the site remained rural and farmland up until the current development.

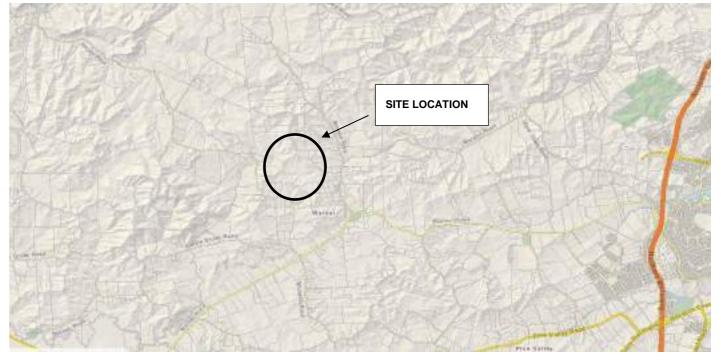


Figure 1: Site Location Plan (Auckland Council GIS Geomaps)

¹ Retrolens website, Sourced from http://retrolens.nz and licensed by LINZ CC-BY 3.0

3 INVESTIGATION

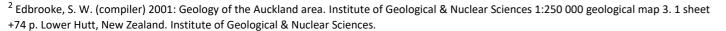
3.1 Field Investigation

The field investigation was carried out in two phases in November 2021 and June 2023 during summer and winter weather conditions. The scope of fieldwork completed is shown below:

	Investigation Summary									
Test ID	Test Type	Depth (m)	Samples ¹							
HA09-21 to HA13- 21	Hand Auger Boreholes	2.2-3.9	-							
GCR01-23 to GCR08-23	Geotechnical Completion Report (GCR) Hand Auger Borehole	2.0	4 x Expansives							
HA01-24 to HA05- 24	Hand Auger Boreholes	2.0	-							
Notes: ¹ Refer Section 6	3 for details	I								

Engineering logs of the relevant investigations are appended.

The approximate locations of the respective investigation sites referred to above are shown in *Figure 2*.


4 **GEOLOGY**

4.1 Published Geology

Published geological maps² for the area depict the regional geology for the area as comprising Hukerenui Mudstone (Mangakahia Complex) of the Northland Allochthon Group with Alluvium found in gullies and streams as illustrated in *Error! Reference source not found.***3**.

	Published Geology Summary									
Geological Unit	Location	Behaviour	Principal Potential Geohazards							
Tauranga Group Alluvium/ Colluvium	Mapped in low-lying areas around adjacent streams	Unconsolidated organic deposits and clays will usually subside if unsupported or overloaded.	Load-induced settlement							
		Susceptible to soil creep and shallow flows on gentle slopes, particularly when saturated.								
Hukerenui Mudstone (part of the Mangakahia Complex of the Northland Allochthon)	Predominant geology as per published maps.	High plasticity clays prone to debris sliding and deep-seated creep, even on gentle slopes.	Landslips							

The main geohazards associated with these geological units are presented below:

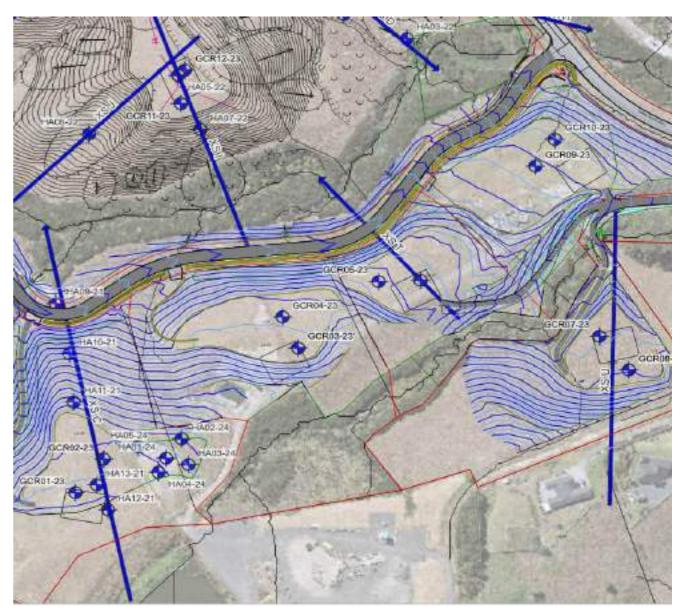


Figure 2: Site Investigation Plan

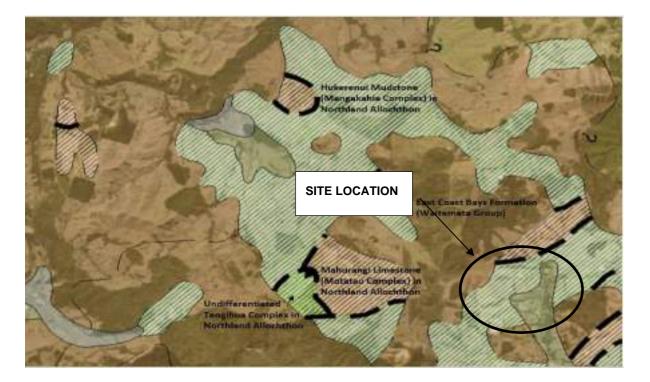


Figure 3: Regional Geological Map (GNS Geology)

DESIGN CRITERIA 5

The stability of cut batters and fill embankments under a range of design conditions is expressed in terms of a factor of safety, which is defined as the ratio of forces resisting failure to the forces causing failure. The following performance standards are recommended for slope stability assessment:

Slope Stability Minimum Factor of Safety Criteria								
Condition	Building Platforms	Amenity or Low Risk Areas						
Normal Groundwater Condition	1.5	1.2						
Extreme (worst credible) groundwater condition	1.3	1.1						
Seismic condition for ULS PGA (calculated as 0.19g)	1.0	N/A or 1.0						

DESIGN PARAMETERS 6

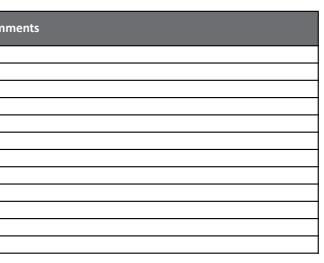
Geotechnical Design Parameters									
Unit Description	Strength Range	γ (kN/m³)	c´ (kPa)	φ´ (deg)	S _u (kPa)				
Engineered Fill	100-200kPa	17.5	8	28	100				
Alluvium (Tauranga Group)	60-90kPa	18	4	22	60				
Hukerenui Residual Soils (Northland Allochthon)	89 – 120 kPa	17	5	26	60				
Hukerenui Transition Zone (Northland Allochthon)	15-20 blows/ 100mm	18	6	12	125				

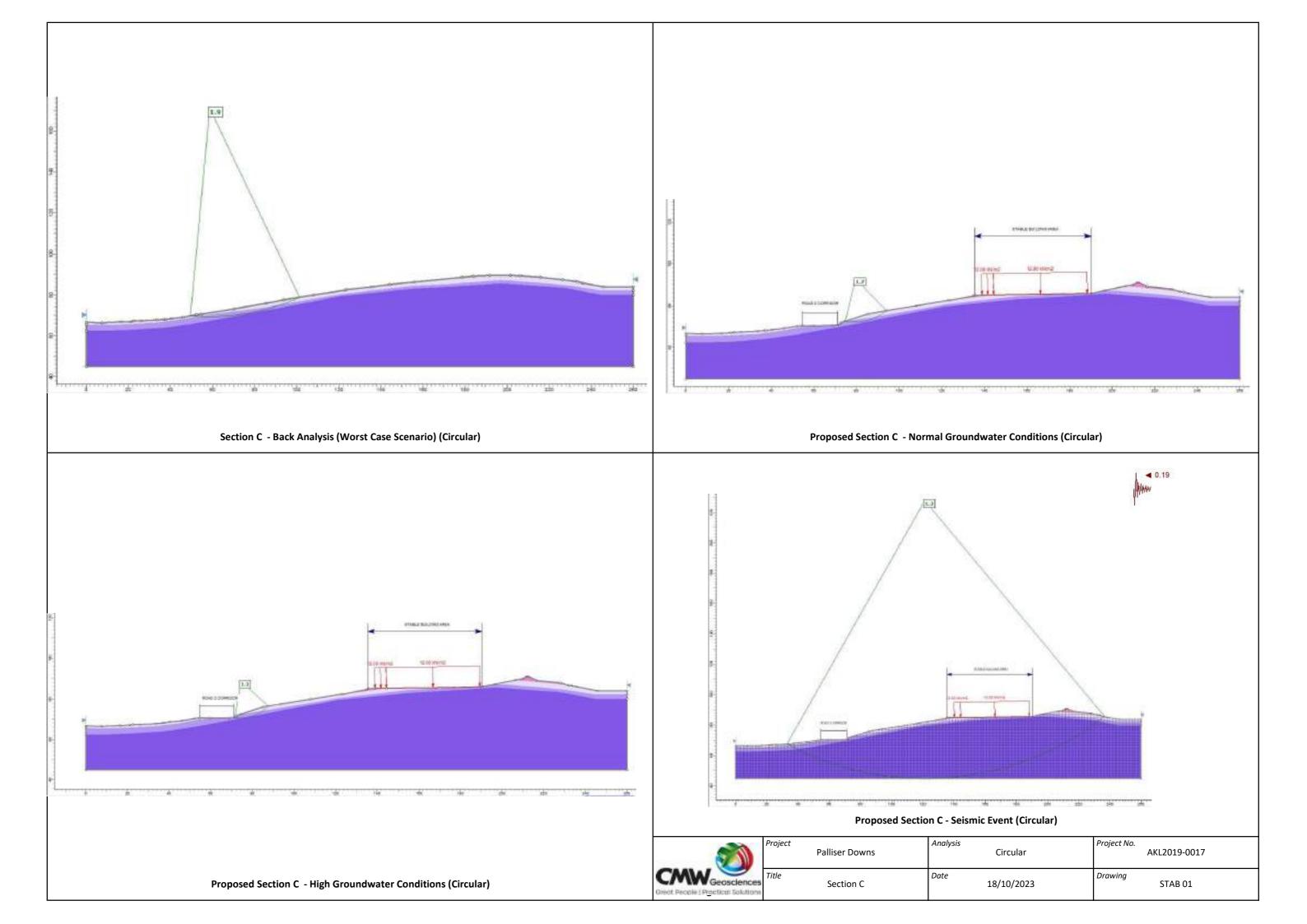
Hukeren	ui Parent Rock (Northland Allochthon)	N = 50+	20.5	20	28	150			
Notes:	tes: γ = soil unit weight (conservative value determined from typical published values for similar soil types)								
	 γ = soil unit weight (conservative value determined from typical published values for similar soil types) c´ = effective cohesion (conservative industry accepted values, CMW laboratory testing records and back analysis) 								
C	ϕ' = effective friction angle (conservative indu	stry accepted values,	CMW laboratory t	esting records a	and back analysi	s)			

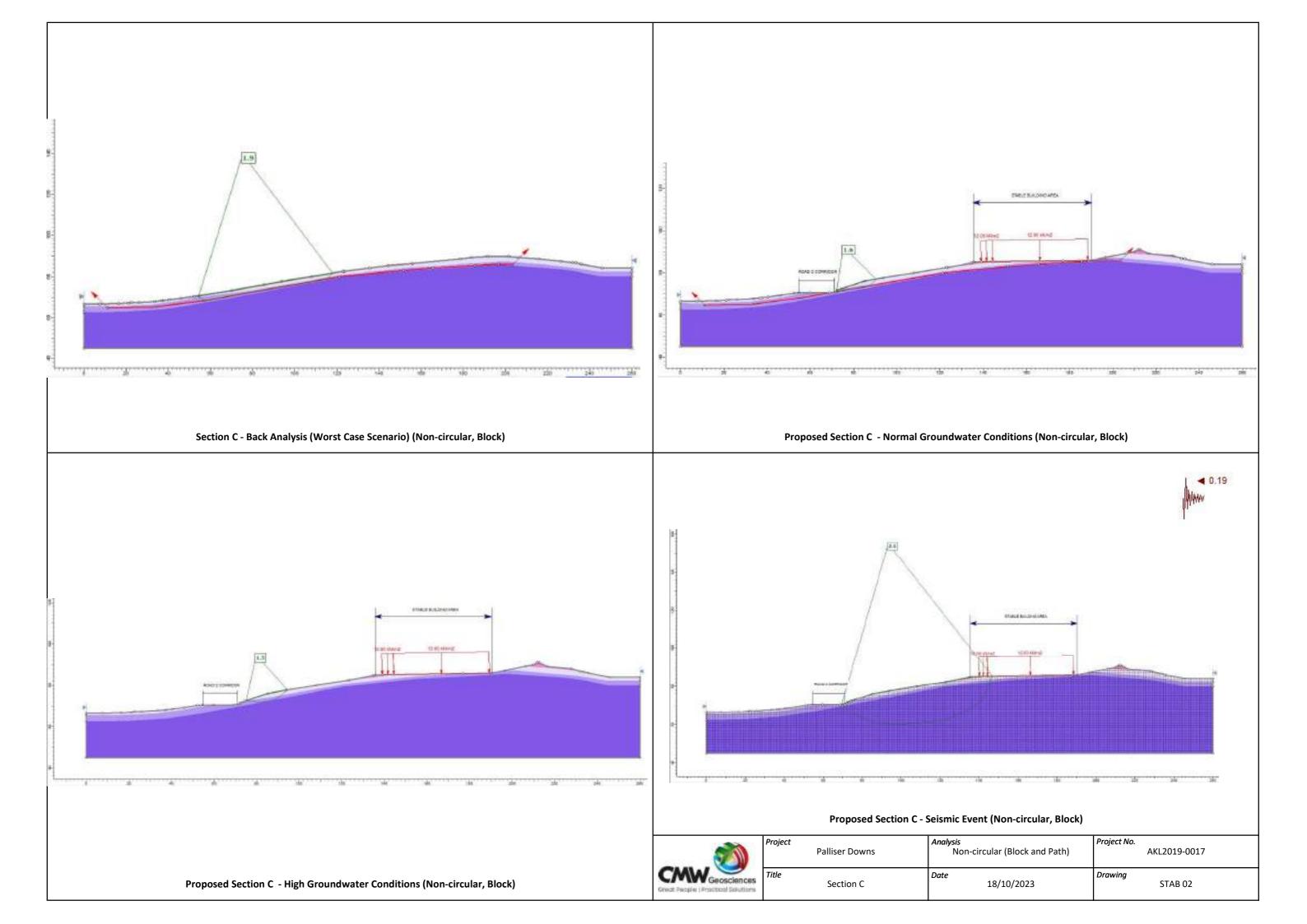
METHODOLOGY 7

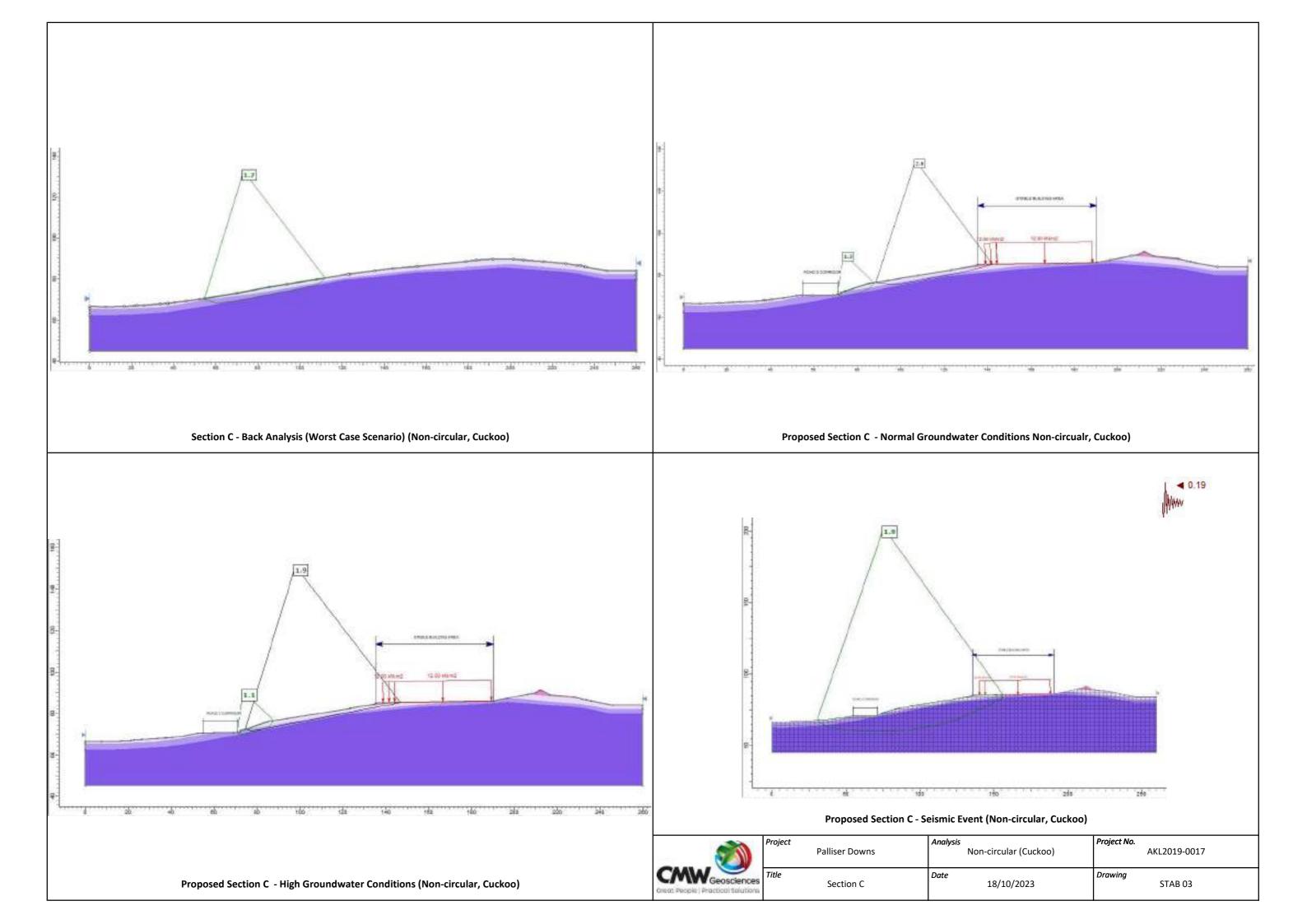
Ν

Slope stability analyses were undertaken using the Morgenstern-Price method of slices under complex failure . mechanisms using the proprietary software SLIDE Version 6.


8 **INITIAL RESULTS**


Slope stability analyses were undertaken on Sections C-C, T-T and U-U (see Figure 2). Results are appended to this memo and are summarised below for the proposed landform.


	Slope Stability Analysis Results – Minimum Factors of Safety									
Continu	Stable	Building Pla	tforms		Amenity Areas					
Section	Prevailing	Transient	Seismic	Prevailing	Transient	Seismic				
C-C	2.6	1.9	2.1	1.3	1.1	-				
T-T	1.6	1.5	2.2	-	-	-				
U-U	2.1	1.8	2.2	1.4	1.2	-				


Based on the slope stability analysis, required factors of safety were met for all three sections for all cases. The slip surface for Section C-C is striking through an area outside the building platform. In regard to the low factor of safety numbers for the normal groundwater and high groundwater case for Section U-U, are outside of the building platform and are considered to be within appropriate limits. No remediation required.

						Stability Analysis Summary Tak	ble
			Client:	Cabra Rural Develo	opments Limited / R	ahopara Farms Limited	
633968870318338			Project:	Palliser Downs	•		
CAAL	VGeosciences		Project Number	AKL2019-0017			
	Geosciences		Date:	25/09/2023			
ALCONTRACTOR AND A MALE OF	e Practical Solutions		Notes:	NGW = Normal Gr	oundwater	Target minimum FoS = 1.5	
				HGW = High Grour	ndwater (worst cred	-	
				SEIS = Seismic	·	Target minimum FoS = 1.0	
Cross Section	Profile	Design Case	Analysis Type	Factor of Safety	Printout Included		Additional Comm
	Back Analysis	HGW	Circular	1.9	√		
Section C		NGW	Circular	1.7	✓	Meets FoS requirements	
Section C	Proposed	HGW	Circular	1.2	✓	Failing on area outside building platform	
		SEIS	Circular	1.2	✓	Meets FoS requirements	
	Back Analysis	HGW	Non-Circular (Block)	1.9	✓		
Section C		NGW	Non-Circular (Block)	1.6	✓	Meets FoS requirements	
Section C	Proposed	HGW	Non-Circular (Path)	1.5	✓	Meets FoS requirements	
		SEIS	Non-Circular (Path)	2.1	✓	Meets FoS requirements	
	Back Analysis	HGW	Non-Circular (Cuckoo)	1.7	✓		
Section C		NGW	Non-Circular (Cuckoo)	1.3	✓	Failing on area outside building platform	
Jection	Proposed	HGW	Non-Circular (Cuckoo)	1.1	✓	Failing on area outside building platform	
		SEIS	Non-Circular (Cuckoo)	2.1	✓	Meets FoS requirements	

Material Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (°)	Ru Value
Engineered Fill		18	Mohr- Coulomb	8	28	0.05
Hukerenui Mudstone (NA) Residual Soils		17	Mohr- Coulomb	5	26	0.02
Hukerenui Mudstone (NA) Transition Zone		18	Mohr- Coulomb	6	12	0.05
Hukerenui Mudstone (NA) Parent Rock		20.5	Mohr- Coulomb	20	28	0

Material Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (°)	Ru Value
Engineered Fill		18	Mohr- Coulomb	8	28	0.2
Hukerenui Mudstone (NA) Residual Soils		17	Mohr- Coulomb	5	26	0.5
Hukerenui Mudstone (NA) Transition Zone		18	Mohr- Coulomb	6	12	0.2
Hukerenui Mudstone (NA) Parent Rock		20.5	Mohr- Coulomb	20	28	0

Normal Groundwater Conditons Parameters

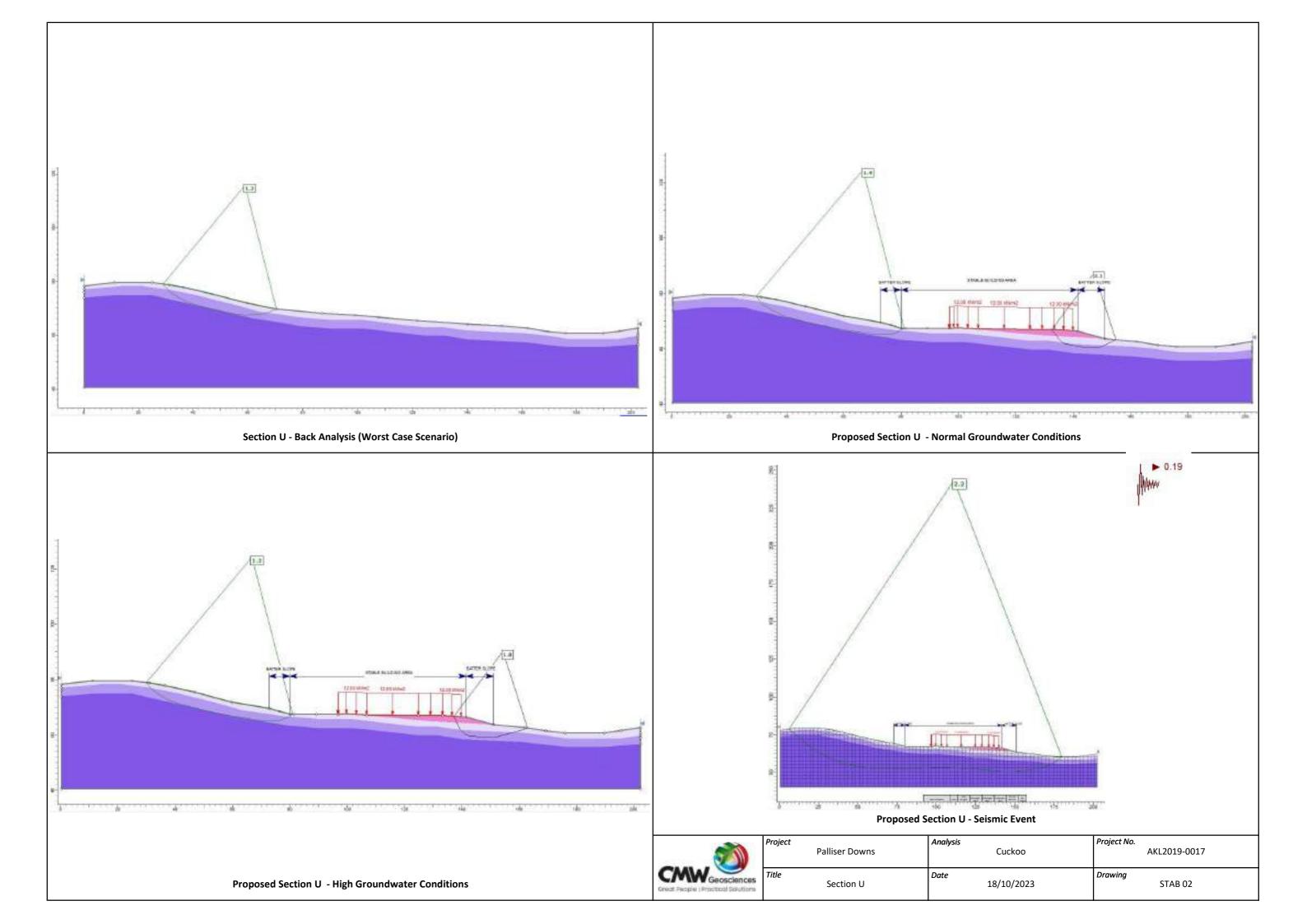
Material Name	Color	Unit Weight (kN/ m3)	Strength Type	Cohesion (kPa)	Cohesion Type	Shear/ Normal Function	Ru Value
Engineered Fill (Undrained)		18	Undrained	100	Constant		0.05
Hukerenui Mudstone (NA) Residual Soils (Undrained)		17	Undrained	60	Constant		0.2
Hukerenui Mudstone (NA) Transition Zone (Undrained)		18	Undrained	125	Constant		0.05
Hukerenui Mudstone (NA) Parent Rock (Undrained)		20.5	Shear/ Normal Function			Shear Normal	0

High Groundwater Conditions Parameters

S	Project Palliser Downs	Analysis
Great Receive Practical Tolutions	Title Section C Parameters	Date

Seismic Parameters

	Project No. AKL2019-0017
18/10/2023	Drawing STAB 0


						Stability Analysis Summary Table
			Client:	Cabra Rural Develo	opments Limited / Rał	opara Farms Limited
STREET COMMA			Project:	Palliser Downs		
CAAL			Project Number	AKL2019-0017		
CM	Geosciences		Date:	25/09/2023		
Great People	e Practical Solutions		Notes:	NGW = Normal Gro	oundwater	Target minimum FoS = 1.5
				HGW = High Grour	ndwater (worst credib	le) Target minimum FoS = 1.3
				SEIS = Seismic		Target minimum FoS = 1.0
Cross Section	Profile	Design Case	Analysis Type	Factor of Safety	Printout Included	Additional Comm
	Back Analysis	HGW	Non-Circular	1.4	 ✓ 	
Section T		NGW	Non-Circular	1.6	✓	Fos required m
Section 1	Proposed	HGW	Non-Circular	1.4	✓	
		SEIS	Non-Circular	2.2	✓	
	Back Analysis	HGW	Non-Circular	1.2	✓	
Continu II		NGW	Non-Circular	1.4	✓	Failure circles less than target minimum outside o
Section U	Proposed	HGW	Non-Circular	1.2	 ✓ 	
		SEIS	Non-Circular	2.2	✓	

ments

met

e of building platform (Ammenity area)

Material Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (°)	Ru Value
Fill		17.5	Mohr- Coulomb	8	28	0.05
Alluvium		18	Mohr- Coulomb	4	22	0.2
Hukerenui Mudstone (NA) Residual Soils		17	Mohr- Coulomb	5	26	0.2
Hukerenui Mudstone (NA) Transition Zone		18	Mohr- Coulomb	6	12	0.05
Hukerenui Mudstone (NA) Parent Rock		20.5	Mohr- Coulomb	20	28	0

Material Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (*)	Ru Value
Fill		17.5	Mohr- Coulomb	8	28	0.2
Alluvium		18	Mohr- Coulomb	4	22	0.5
Hukerenui Mudstone (NA) Residual Soils		17	Mohr- Coulomb	5	26	0.5
Hukerenui Mudstone (NA) Transition Zone		18	Mohr- Coulomb	6	12	0.2
Hukerenui Mudstone (NA) Parent Rock		20.5	Mohr- Coulomb	20	28	0

Normal Groundwater Parameters

Material Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Cohesion Type	Shear/ Normal Function	Ru Value
Fill (Undrained)		20	Undrained	100	Constant		0.05
Alluvium (Undrained)		18	Undrained	60	Constant		0.2
Hukerenui Mudstone (NA) Residual Soil (Undrained)		20	Undrained	60	Constant		0.2
Hukerenui Mudstone (NA) Transition Zone (Undrained)		18	Undrained	125	Constant		0.05
Hukerenui Mudstone (NA) Parent Rock (Undrained)		20.5	Shear/ Normal Function			Shear Normal	o

High Groundwater Parameters

	Project	Pa
Creat People Practical telutions	Title	F

Seismic Parameters

	Project No. AKL2019-0017	
18/10/2023	Drawing STAB 03	